

707 WILSHIRE BOULEVARD, SUITE 3650 LOS ANGELES, CA 90017 213.488.4911

October 26, 2023

Anastasia Seims, P.E. Public Works Director City of Palos Verdes Estates 340 Palos Verdes Drive West Verdes Estates, CA 90274

Re: Seismic Evaluation of Palos Verdes Estates City Hall and Home Owner Association Buildings Palos Verdes Estates, CA Walker Consultants Project 37-009696.02

Dear Ms. Seims:

Walker Consultants is pleased to submit for your review this report for seismic evaluation of Palos Verdes Estates City Hall and Home Owner Association Buildings.

We appreciate the opportunity to be of service to you on this project. If you have any questions or comments, please do not hesitate to call.

Sincerely,

WALKER CONSULTANTS

Sohban Khan, PE Senior Engineer October 26, 2023

Date

Behnam Arya PhD, PE Principal - Forensics & Restoration

October 26, 2023

Date

SEISMIC EVALUATION City Hall and HOA| Palos Verdes Estates, CA

BUILDING ENVELOPE CONSULTING FORENSIC RESTORATION PARKING DESIGN PLANNING

CITY OF PALOS VERDES ESTATES CITY HALL & HOA BUILDINGS SEISMIC EVALUATION

340 Palos Verdes Drive West, Palos Verdes Estates, CA 90274 October 26, 2023

Prepared for: City of Palos Verdes Estates

WALKER CONSULTANTS 707 Wilshire Blvd, Suite 3650 Los Angeles, CA 90017 213.488.4911 walkerconsultants.com

October 26, 2023

TABLE OF CONTENTS

CONTENTS

EXECUTIVE SUMMARY	4
INTRODUCTION SCOPE OF WORK REFERENCES	5 5 5
BUILDING DESCRIPTION CITY HALL STRUCTURAL SYSTEM HOA STRUCTURAL SYSTEM	6 7 8
TIER-1 SEISMIC EVALUATION PER ASCE 41-17 SEISMIC HAZARD AT THE SITE LIQUEFACTION POTENTIAL AT THE SITE FAULT ACTIVITY AT THE SITE	13 14 19 20
TIER 1 SCREENING CHECKLISTS	21
TIER 2 ANALYSIS	32
SUMMARY	33
RECOMMENDATIONS	34
OPINION OF PROBABLE COSTS	38
APPENDIX-A - TIER 1 CALCULATIONS	44
APPENDIX-B - TIER 2 CALCULATIONS	51

EXECUTIVE SUMMARY

This report contains the results of a seismic evaluation of the Palos Verdes Estates City Hall and Homeowner Association (HOA) Buildings located at 340 Palos Verdes Drive in the City of Palos Verdes Estates, California. Walker used a Tier 1 seismic screening and Tier 2 deficiency-based approaches outlined in the American Society of Civil -17 Seismic Evaluation and Retrofit of Existing Buildings, for this evaluation. The

City Hall and HOA buildings are occupied by the City Hall and Fire Station personnel and shall remain operational after a major, design-level earthquake. Therefore, the facility is classified as Risk Category IV as defined in the American Society of Civil Engineers Standard (ASCE 7-16), referenced by the current California Building Code.

The Tier 1 screening checks identified several potential deficiencies in the lateral system of the building. Therefore, a Tier 2 evaluation is conducted during which a more detailed engineering analysis was performed to investigate the deficiencies identified in Tier 1 and to propose conceptual repairs to address those deficiencies, if necessary.

The ASCE 41-17 Tier 1 and Tier 2 seismic evaluation approach identified several structural deficiencies in the City Hall and HOA buildings as summarized below:

City Hall Building

- Insufficient shear capacity of plywood shear walls in resisting ASCE 41-17 partially distributed lateral loads in the East-West direction at the second-floor level.
- Insufficient shear capacity of masonry walls in resisting ASCE 41-17 specified lateral loads in the North-South direction at the first and second-floor levels.
- Insufficient shear capacity of plywood shear walls in resisting ASCE 41-17 partially distributed lateral loads in the North-South direction at the second-floor level.
- Inadequate strength of connection between masonry shear walls and diaphragms and between masonry shear walls and foundations to transfer of lateral forces.
- Vertical elements in seismic-force-resisting system are not continues to the foundation. Vault wall at west end of second floor has an offset with the masonry wall below.
- Diagonal roof sheathing does not have sufficient capacity to transfer ASCE 41-17 specified seismic forces to the second-floor seismic force resisting plywood shear walls, tension only braces and vault CMU walls.

HOA Building

- Insufficient shear capacity of plywood shear walls in resisting ASCE 41-17 specified seismic forces at the second floor east-west and north-south directions.
- Original drawings do not specify wood blocking for the roof diaphragm, nor it was accessible during our site visit to investigate the presence of wood blocking. If unblocked, it is required to add blocking or replace the existing sheathing.

We have proposed conceptual seismic upgrades to remediate lateral load resisting system deficiencies as listed in this report. We recommend that the City of Palos Verdes Estates budget a minimum of \$2,350,000_for seismic upgrades of City Hall and HOA Buildings for compliance with the requirements of ASCE 41-17 for existing structures.

October 26, 2023

INTRODUCTION

Walker received a request from Ms. Anastasia Seims, the City of Palos Verdes Estates Public Works Director, to conduct a seismic evaluation of the Palos Verdes Estates City Hall and HOA buildings located at 340 Palos Verdes Drive in the City of Palos Verdes Estates, California. For this evaluation, Walker used a Tier 1 seismic screening and Tier 2 deficiency-based approaches outlined in the American Society of Civil Engineers publication, ASCE 41-17 Standard, as referenced by the current California Existing Building Code. Only structural assessments were -17

prescribed earthquake loads as requested by the City of Palos Verdes Estates.

SCOPE OF WORK

For this investigation and to meet the project objectives, we performed the following tasks:

- 1. Reviewed available existing structural drawings and reports provided by the City.
- 2. Visited the site to observe/compare the building with existing drawings (where possible).
- 3. Performed ASCE 41-17 Tier 1 screening based on appropriate checklist to identify deficiencies.
- 4. Compiled a list of the deficiencies upon completion of Tier 1 screening.
- 5. Performed a Tier 2 analysis to determine and mitigate as many deficiencies as possible by calculations.
- 6. Made recommendations for strengthening (retrofit scheme) of the structure (as necessary) to meet the current seismic code requirements.
- 7. Provided approximate cost of the recommended retrofit scheme.
- 8. Prepared this written narrative of the results of evaluation and recommendations for review and further directions.

REFERENCES

In addition to our site investigation and engineering analysis, we reviewed the following documents that were provided to us:

- 1. Structural Design Calculations of City Hall building, prepared by C.H. Lewis, dated August 15, 1957.
- 2. Architectural, Structural, Mechanical and Electrical drawings of the City Hall Building by Carrington H. Lewis Architect, undated (likely around 1957 based on calculation sheets provided).
- 3. Structural Design Calculations of Public Works Facility (HOA) and Parking Structure, prepared by South Bay Engineering Corporation, dated October 1974.
- 4. Architectural, Structural and Mechanical drawings of Public Works Facilities (HOA building) and parking structure (addition to original City Hall prepared by Friel and Linde dated February 1975).
- 5. Parking Structure and Public Works Facility (HOA) Precast Concrete drawings, prepared by Western Precast Inc., dated September 1975.
- 6. City Hall remodeling plans for interior finishes prepared by Greenlaw Design Associates, Inc. dated February 1988.
- 7. Council Chamber Plans, prepared by Greenlaw Design Associates, Inc. dated 1990.
- 8. Remodeling plans for Administrative Offices and Council Chambers, prepared by Hosa Design Associates, dated December 15, 2006.

- 9. Palos Verdes City Hall Seismic Safety Study Report and Findings, prepared by Melvyn Green and Associates Structural Engineers, dated May 2011.
- 10. Seismic retrofit drawings prepared by IDS Group, dated April 4, 2012.
- 11. Proposal for Consulting Architectural and Engineering Services for Studying City Hall Facilities, prepared by IDS Group, dated June 2, 2015.
- 12. ASCE 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures, publication of American Society of Civil Engineers, Resto Virginia, 2016.
- 13. ASCE 41-17 Seismic Evaluation and Retrofit of Existing Buildings, publication of American Society of Civil Engineers, Resto Virginia, 2017.

BUILDING DESCRIPTION

The Palos Verdes Estates City Hall complex is located at 340 Palos Verdes Drive in the City of Palos Verdes Estates, California. The complex consists of the main City Hall Building and Public Works Facility along the north and a Parking Structure at the south section. The Public Works Facility is now referred to as Homeowner Association (HOA) building. The main City Hall is a two-story structure with a partial basement level built circa 1957. The plan dimensions are approximately 142 feet in the east-west direction by 43 feet in the north-south direction. It houses the City staff, the City Council Chamber as well as Police and Fire Department at the lower floor. The basement level is used as a firing range for the Police Department. There is also a clock tower structure at the south elevation which is also used for hanging Fire Department hoses. The building has a hipped roof with a ridge line running in the eat-west direction covered with S-shaped clay tiles.

The HOA building and the parking structure were added circa 1975 according to the documents provided to us. The HOA building is a two-story structure with plan dimensions of approximately 77 feet in the east-west direction by 40 feet in the north-south direction. It is used for keeping city records and also houses City Parks and Streets staff. The building has a hipped roof with a ridge line running in the eat-west direction covered with S-shaped clay tiles. A 2-inch-wide joint separates the HOA building from the parking structure along the south elevation of the building. The HOA building is connected to the City Hall with a bridge at the second floor. The bridge in enclosed by metal railing and has a hipped roof with clay tiles.

The parking garage is a two-level concrete structure. Walker has already performed a condition assessment and seismic evaluation of the parking structure and issued a report of findings on May 1, 2023. The focus of this report is on seismic evaluation of the City Hall and HOA buildings.

According to the documents provided to us, a seismic retrofit of the City buildings was performed in 1992. However, no plans of the retrofit were available for review. A seismic evaluation of the buildings was performed in 2011 by Melvyn Green and Associates Structural Engineers. A set of seismic retrofit drawings was prepared by IDS Group in 2012 based on the 2011 evaluation. However, according to the City of Palos Verdes Estates Public Works Director, the proposed IDS retrofit was not constructed.

Figure1 shows an aerial view of the parking structure, and Figures 2 through 6 display the floor plans of the City Hall and HOA buildings.

Below is a detailed description of the gravity (i.e., vertical) and lateral load resisting systems:

October 26, 2023

CITY HALL STRUCTURAL SYSTEM

Gravity System

The City Hall structural system consists of a combination of structural materials on different floors including concrete, concrete masonry, brick masonry, steel, and wood. The hipped roof is supported on nine steel trusses spanning in the north-south direction which are connected to each other at the ridge and at quarter points of the top chords by steel beams. At the east and west ends of the structure, additional steel beams are provided to support the ends slopes. Roof rafters (2 x 8 at 16 inches on center) support the weight of the 1 x 6-inch roof sheathing boards and clay tiles and transfer the load to the roof steel structure. The weight of roof trusses is supported by steel beams at the perimeters which in turn are supported on 3.0-inch diameter pipe columns embedded in perimeter stud walls according to the original structural drawings.

The exterior walls on the second floor consists of light-weight wood framing (stud walls). There are two vaults with plan dimensions of approximately 10 feet by 12 feet on the second level, one at the west end and one in the middle of the floor. The vault walls are made of reinforced concrete masonry.

The second floor which is the floor below the roof consists of a 4.5-inch-thick concrete slab supported on concrete and steel beams. The concrete floor is supported on an interior 10-inch reinforced concrete wall at first floor in the east-west direction and 9-inch-thick exterior brick walls around the perimeters. The second-floor structure in the fire department is partially supported on steel pipe columns.

The first floor consists of a 6-inch-thick concrete slab supported on concrete beams. The concrete floor is supported on an interior 10-inch reinforced concrete wall in the east-west direction and 10-inch-thick exterior reinforced concrete walls around the perimeters of basement. The basement does not extend to the west end of the City Hall. The west end where the fire department is housed has a 5-inch-thick reinforced concrete slab-on-grade. The foundation system consist of shallow continues reinforced concrete footings below the interior and exterior walls and concrete spread footings below pipe columns.

Lateral System

The roof 1 x 6 diagonal roof sheathing acts as a diaphragm and transfers lateral loads to the roof framing system and to the second-floor vertical elements (walls) of lateral resisting system. According to the original structural plans of the building, cross bracing consisting of flat steel bars were provided between pipe columns at 10 locations at the second floor. The 2011 Melvyn Green report noted that the exterior wall panels at the second floor were retrofitted in 1992 by adding new plywood sheathing to each steel braced frame. The east CMU wall of the middle vault at the second floor is connected to the roof steel trusses (Truss #4 in the original City Hall drawings, detail G-S-8) in the north-south direction according to the original structural plans. At the west end, the edge CMU wall of the west vault is also connected to the roof framing in the north-south direction. Therefore, the lateral resisting system of the second floor consists of two CMU vault walls, perimeter plywood shear walls and two ordinary steel braced frames in the north south direction of the building.

The second floor 4.5-inch-thick concrete slab acts as a diaphragm and transfers the earthquake loads from the second floor to the first-floor walls. The first-floor lateral resisting elements in the east-west direction consist of an interior 10-inch-thick reinforced concrete wall at the middle of the floor as well as exterior reinforced brick

walls. In the north-south direction, the first-floor lateral system consists of an interior 9-inch reinforced brick party wall between offices and the fire department and 9-inch reinforced walls at the east and west ends of the building.

The first floor 6-inch-thick concrete slab acts as a diaphragm and transfers the earthquake loads from the first floor to the basement reinforced concrete walls. In the east-west direction, the basement vertical elements of lateral resisting system consist of an interior 12-inch-thick reinforced concrete wall at the middle of the floor as well as 10-inch-thick reinforced concrete walls at the north and south perimeters. In the north-south direction, the basement lateral system consists of 10-inch reinforced concrete walls at the east and west perimeters of basement. Figures 2 to 4 show the approximate locations of the lateral load resisting walls of the City Hall building.

The foundation system consist of shallow continues reinforced concrete footings below the interior and exterior walls.

HOA STRUCTURAL SYSTEM

Gravity System

concrete, concrete masonry, brick masonry, steel, and wood. The hipped roof structural system consists of $\frac{1}{2}$ inches thick plywood sheathing supported on 2 x 10-inch rafters at 16 inches on center and 2 x 6 ceiling joists at 16 inches on center. The ceiling joists are connected to the roof rafters by 2 x 4 wood posts (i.e., wood hangers) at the one-third points. The roof structure is supported on perimeter stud walls with 2 x 8-inch studs at south exterior face of the building and 2 x 12-inch studs at the north exterior face of the building. For both exterior walls, studs are located at 16 inches on center. Roof rafters are supported on a steel I beam along the roof ridge.

The second floor which is the floor below the roof consists of a 10 inch thick precast hollow-core concrete planks. Hollow core planks are topped with 2.5 inches of reinforced concrete. The concrete slab is supported on steel beams, and first floor interior and exterior brick walls, and exterior concrete walls. Walls are typically 8 inches thick except for two corner sections of brick walls along the north elevation which are 20 inches thick.

The foundation system consist of shallow continues reinforced concrete footings below the interior and exterior walls.

Lateral System

The roof sheathing acts as a diaphragm and transfers the lateral loads (such as earthquakes) to the roof framing elements and the second-floor lateral resisting walls. According to the 2011 Melvyn Green report, exterior wall panels at the second floor were retrofitted in 1992 by adding new ½ inch thick plywood sheathing to one side of the exterior walls with 8d at 2.5 inches on center boundary and edge nailing. There is a rectangular vault at the middle south edge of the second floor. The vault walls are 8-inch-thick reinforced masonry, and the vault ceiling consists of 5-ich thick concrete slab. The vault walls do not seem to be connected to the roof diaphragm according to the original building plans and as such, they do not contribute to the lateral resisting system. The 2011 Melvyn Green report notes that new stud walls were added in 1992 that extend from top of the CMU walls to the roof framing, however, we could not verify this when we were at the site. Therefore, the lateral resisting system at the second floor primarily consists of plywood shear walls in both directions of the building.

October 26, 2023

The second-floor concrete hollow core planks that acts as a diaphragm transferring loads to concrete and masonry walls at the first floor and subsequently from walls to the foundations. The first-floor walls in the east-west direction consists of 8-inch-thick concrete wall at the precast stair and 8-inch-thick perimeter CMU walls along the north and the south edge. In the north-south direction, the lateral resisting system consist of 8-inch concrete wall at the east exterior and 9-inch brick wall along the west exterior. Figures 5 and 6 show the approximate locations of the lateral load resisting walls of the HOA building.

SEISMIC EVALUATION City Hall and HOA| Palos Verdes Estates, CA

WC PROJECT No. 37-009696.02

October 26, 2023

Figure 2 City Hall, Second Floor Plan

Figure 3 City Hall, First Floor Plan

October 26, 2023

SEISMIC EVALUATION City Hall and HOA| Palos Verdes Estates, CA

WC PROJECT No. 37-009696.02

October 26, 2023

-thick re

-thick reinforced concrete wall

111111

-thick reinforced brick wall

October 26, 2023

TIER-1 SEISMIC EVALUATION PER ASCE 41-17

As stated earlier, the ASCE 41-17 Tier 1 screening approach was used as the first step of evaluation for this project. Tier 1 evaluation aims at identifying potential deficiencies based on the performance of similar buildings in past earthquakes. As part of completing the checklists, onsite observation was performed on August 22, 2023, to verify the as-built properties of the lateral resisting system, and to observe its condition.

The evaluation is performed through specified checklists given in the ASCE 41-17 standard for various types of buildings. To determine the appropriate checklist for Tier 1 evaluation, the first step is to specify the performance objective for the structure. This is based on the performance level required for the structure after an earthquake and the level of seismicity at the location of the structure. The buildings are occupied by the City and Fire Department personnel and need to remain operational after a major, design-level earthquake. Therefore, the Palos Verdes Estates parking City Hall and HOA buildings are considered an essential facility with occupancy Risk Category IV as defined in the American Society of Civil Engineers Standard (ASCE 7-16).

Per our discussion with the City of Palos Verdes Estates Public Works, Basic Performance Objective for Existing Buildings (BPOE) was selected for this evaluation which lists default (pre-defined) performance objectives in ASCE 41-17 for buildings with various risk categories. The purpose of the BPOE is to introduce a reduced performance level for an existing building compared to a new building. In Table 2-1 of ASCE 41-17 (reproduced herein as Figure 6) two basic performance objectives are considered for Risk Category IV:

- 1. Immediate Occupancy (IO) Structural Performance for seismicity level BSE-1E
- 2. Life Safety Structural (LS) Structural Performance for seismicity level BSE-2E

Seismicity Level BSE-1E in ASCE 41-17 is defined as a seismic hazard with a 20% probability of exceedance in 50 years for use with the Basic Performance Objective for Existing Buildings. Seismicity Level BSE-2E is defined as a seismic hazard with a 5% probability of exceedance in 50 years for use with the Basic Performance Objective for Existing Buildings.

The scope of Tier 1 assessment required for the two BPOEs identified above is listed in Table 2-2 of ASCE 41-17 (the table on the right in Figure 7). Based on this table, for occupancy Risk Category IV, the Tier 1 screening shall be conducted for both Immediate Occupancy (with seismic hazard BSE-1E) and Life Safety (with seismic hazard BSE-2E). According to footnote *d* of Table 2-2, the Tier 1 screening checklists for Life Safety Structural Performance shall be based on the Collapse Prevention Structural Performance Level, except that analysis of stresses in lateral resisting system should be modified to consider Life Safety Structural Performance Level. Therefore, wherever required, two sets of analysis and engineering calculations as described above are conducted for Tier 1 evaluation of the structures.

Diek

October 26, 2023

Figure E7 ASCE 41-17 Tables for Basic Performance Objective for Existing Buildings (BPOE) and Scope of Assessment for the Parking Structure

Table 2-1. Basic Performance Objective for Existing Buildings (BPOE) Table 2-2. Scope of Assessment Required for Tier 1 and Tier 2 with the Basic Performance Objective for Existing Buildings (BPOE)

Category	BSE-1E	BSE-2E		Tier 1	1 and 2 ^a	
I and II	Life Safety Structural	Collapse Prevention	Risk Category	BSE-1E	BSE-2E	
	Life Safety Nonstructural Performance (3-C) Damage Control	Ance Structural Performance I and II Hazards Reduced tural Nonstructural ance (3-C) Performance ^a (5-D) ontrol Limited Safety		Not evaluated Life Safety Nonstructural Performance (3-C)	Collapse Prevention Structural Performance Hazards Reduced Nonstructural Performance ^b (5-D)	
	Performance Position Retention Nonstructural Performance (2-B)	Performance Hazards Reduced Nonstructural Performance [®] (4-D)	Ш	Not evaluated	Limited Safety Structural Performance ^c Hazards Reduced	
IV	Immediate Occupancy Structural	Life Safety Structural Performance		Nonstructural Performance (2-B)	Nonstructural Performance ^b (4-D)	
	Performance Position Retention Nonstructural	Hazards Reduced Nonstructural	IV	Immediate Occupancy Structural Performance	Life Safety Structural Performance ^d	
^a Complian deemed	Performance (1-B) nce with ASCE 7 provision to comply.	s for new construction is		Position Retention Nonstructural Performance (1-B)	Hazards Reduced Nonstructural Performance ^b (3-D)	
			 ^a For Tier Structura evaluatee ^b Compliar deemed ^c For Risk based on except ti procedur taken as 	1 and 2 assessments of l Performance for the B d. nce with ASCE 7 provision to comply. Category III, the Tier 1 scree the Collapse Prevention F nat checklist statements es of Section 4.4.3 shall l the average of the valu	f Risk Categories I–III, SE-1E is not explicitly s for new construction is ening checklists shall be Performance Level (S-5), using the Quick Check be based on <i>M_s</i> factors ues for Life Safety and	

Collapse Prevention. For Risk Category IV, the Tier 1 screening checklists shall be based on the Collapse Prevention Performance Level (S-5), except that checklist statements using the Quick Check procedures of Section 4.4.3 shall be based on M_s factors for Life Safety.

As part of the evaluation, the following information for the site were also evaluated:

SEISMIC HAZARD AT THE SITE

The City Hall buildings are located at 340 Palos Verdes Drive West at a latitude and longitude of 33.7999 and - 118.3915, respectively. No soil reports were available for the site to review; therefore, a default soil type Class D (stiff soil) was assumed due to lack of site-specific field data (per ASCE 7-16 Section 20.1, 11.4.3 and 11.4.4). According to ASCE 41-17 Section 2.5, level of seismicity should be determined based on BSE-2N seismicity level. BSE-2N is Basic Safety Earthquake (with 2% probability of exceedance in 50 years) for use with the Basic Performance Objective Equivalent to New Building Standards, taken as the ground shaking based on the Risk-Targeted Maximum Considered Earthquake (MCE_R) per ASCE 7 at a site. According to U.S. Seismic Design Maps, the location of Palos Verdes Estates City Hall parking structure falls into high seismicity zone (see below).

October 26, 2023

Seismicity Level

$S_{DS} = \frac{2}{3}F_a S_S$	(2-4)
$S_{D1} = \frac{2}{3}F_{\nu}S_1$	(2-5)

Table 2-4. Level of Seismicity Definitions

Level of Seismicity ^a	S _{DS}	<i>S</i> _{D1}
Very low	<0.167 g	<0.067 g
Low	≥0.167 g	≥0.067 g
	<0.33 g	<0.133 g
Moderate	≥0.33 g	≥0.133 g
	<0.50 g	<0.20 g
High	≥0.50 g	≥0.20 g
^a The higher level	of colomicity defined by	C or C chall

^a The higher level of seismicity defined by S_{DS} or S_{D1} shall govern.

Seismic Parameters are obtained from Seismic Design Map Tool (https://www.seismicmaps.org/)

For BSE-2N, An earthquake with 2% probability of occurring in 50 years

Basic Safety Earthquake-2 for use with the Basic Performance Objective Equivalent to New Building Standards, taken as the ground shaking based on the Risk-Targeted Maximum Considered Earthquake (MCER) per ASCE 7 at a site.

Ss= 2.088	sec		
S1= 0.757	sec		
Fa= 1.2			
Fv= 1.7			
SDS= 1.670	>	0.5 g	High Seismicity Level
SD1= 0.858	>	0.2 g	High Seismicity Level

Figures 8 to 10 show Seismic parameters for seismicity Level BSE-1E (20% in 50 years), BSE-2E (5% in 50 years) and BSE-2N (2% in 50 years), respectively, for use with the Basic Performance Objective for Existing Buildings.

Figure 8 Seismic Parameters Seismic Hazard **BSE-1E** with 20% probability of exceedance in 50 years for Basic Performance Objective for Existing Buildings (BPOE) and Scope of Assessment for the Parking Structure, Based on U.S. Seismic Design Maps (seismicmaps.org)

S_{X1}

October 26, 2023

Palos Verdes Estates City Hall

340 Palos Verdes Dr W, Palos Verdes Estates, CA 90274, USA

site-modified spectral response (1.0 s)

Latitude, Longitude: 33.7999009, -118.3916122

0.432

Figure 9 Seismic Parameters Seismic Hazard **BSE-2E** with 5% probability of exceedance in 50 years for Basic

Performance Objective for Existing Buildings (BPOE) and Scope of Assessment for the Parking Structure, Based on U.S. Seismic Design Maps (seismicmaps.org)

October 26, 2023

Palos Verdes Estates City Hall

340 Palos Verdes Dr W, Palos Verdes Estates, CA 90274, USA

Latitude, Longitude: 33.7999009, -118.3916122

VIIa PATONO	Via Via	Alma Palos Ve Coin Excha	rdes Ange
Via Almar Pa	Nos Verdes Dirte Estates City Hal	Malaga Cove Library	Vase Via Campesina
Google	Vía Del Monte	Via Del Monte	Ramon Triangle Via Ram Map data ©2023
Date		10/2/2023, 4:36:02 PM	
Design Code Reference Do	cument	ASCE41-17	
Custom Probability		0.05 D - Default (See Section 11.4.2)	
-		D - Delault (See Section 11.4.3)	
Type Hazard Level	Description		Value TL Data
T-Sub-L	Long-period transition period in seconds		8
Туре	Description		Value
Hazard Level			Custom
Custom Probability	Decimal probability of exceedance in 50 years	s for target ground motion.	0.05
SS	spectral response (0.2 s)		1.356
Fa	site amplification factor (0.2 s)		1.2
S _{XS}	site-modified spectral response (0.2 s)		1.627
S ₁	spectral response (1.0 s)		0.471
Fv	site amplification factor (1.0 s)		1.829
S _{X1}	site-modified spectral response (1.0 s)		0.862

Figure 10 Seismic Parameters Seismic Hazard **BSE-2N** with 2% probability of exceedance in 50 years to determine seismicity level at the site, Based on U.S. Seismic Design Maps (seismicmaps.org)

340 Palos Verdes Dr W, Palos Verdes Estates, CA 90274, USA

Latitude, Longitude: 33 7999009, -118 3916122

LIQUEFACTION POTENTIAL AT THE SITE

According to the Liquefaction zones produced for the Los Angeles County, the site is not located in a liquefactionprone region (as shown in Figure 11) and hence liquefaction is not expected at the site during an earthquake event.

Figure 11Liquefaction Zone Map for the vicinity of the site of interestSource: Liquefaction zones | City of Los Angeles Hub (lacity.org)

October 26, 2023

FAULT ACTIVITY AT THE SITE

The City Hall and HOA buildings are more than a mile away to the earthquake producing faults based on California Department of Conservation Fault Activity Map of Los Angeles, as shown in Figure 12. Therefore, no surface rupture is expected at the site.

October 26, 2023

TIER 1 SCREENING CHECKLISTS

The Tier 1 seismic evaluation study in this report is based on Basic Configuration and Structural Checklists. Nonstructural Screening Checklists were not part of the scope of work for this seismic evaluation phase. Potential seismic deficiencies in the structure are identified using Tier 1 Screening Checklists.

As described earlier, the lateral resisting system components of the City Hall building consists of ordinary steel braced frames, and wood and CMU shear walls at the second floor and concrete and CMU walls at the first and basement floor levels. The City Hall building can be classified as Building Type S2a (Steel Braced Frames), Type W2 (Wood Light Frames), and RM1 (Reinforced Masonry Bearing Walls) with Flexible Wood Diaphragm at the Roof Level. Type C2 (concrete shear walls with Stiff concrete diaphragm), and RM2 (Reinforced Masonry Bearing Walls with Stiff concrete diaphragms) at the first and basement floor levels. For Tier 1 evaluation, we ignored the contribution of steel bracing at the second floor of City Hall compared to plywood shear walls. Therefore, ASCE 41-17 Checklists for structure types W2, RM1, RM2 and C2 were used for the City Hall building evaluation.

The lateral resisting system components of the HOA building consists of structural wood panels at the second floor and concrete and masonry shear walls at the first floor. The HOA building can be classified as Type W2 (Wood Light Frames) with flexible roof diaphragm at the Roof level and Type C2 (concrete shear walls with Stiff concrete diaphragm) and RM2 (Reinforced Masonry Bearing Walls with Stiff concrete diaphragm) at the first floor. Therefore, ASCE 41-17 Checklists for structure types W2, RM2 and C2 were used for the HOA building evaluation.

According to ASCE 41-17, both Immediate Occupancy and Collapse Prevention checklists should be used for City Hall Buildings (assuming occupancy Risk Category IV). While Immediate Occupancy has a more comprehensive Checklist, a smaller seismic hazard (BSE-1E) is considered for performing structural checks compared to Collapse Prevention checklist. To consider Life Safety structural performance for BSE-2E seismic hazard, the quick check procedures of Section 4.4.3 shall be based on M_s (System modification factor) for Life Safety as described in d -2 of ASCE 41-17. The results of our investigation are identified with red markings in Figures 13 through 21. Each item in the checklists was investigated by reviewing available drawings, preliminary calculations, or on-site observations. Red circles identify the results of investigation for each item. In the following checklists, iltems identified as a seismic deficiency are marked with rectangles with red fill color.

Figure 13 - Tier 1 Screening - Collapse Prevention Basic Configuration Checklist, City Hall Building

Table 17-2. Collapse Prevention Basic Configuration Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference	1
Low Seismicit	у			-
Building Syste	em—General			
CNC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1	
CNC N/A U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity.	5.4.1.2	A.2.1.2	
	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure.	5.4.1.3	A.2.1.3	
Building Syste	em—Building Configuration			
C NC N/A U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above.	5.4.2.1	A.2.2.2	
CNC N/A U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above.	5.4.2.2	A.2.2.3	
CNCN/A U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-	5.4.2.3	A.2.2.4	Vault wall @ W has an offset withe wall below
CNC N/A U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines.	5.4.2.4	A.2.2.5	
CNC N/A U	MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered.	5.4.2.5	A.2.2.6	
CNC N/A U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension.	5.4.2.6	A.2.2.7	
Moderate Sei	ismicity (Complete the Following Items in Addition to the Items for Low Seismic	city)		-
CNC N/A U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building.	5.4.3.1	A.6.1.1	
	SLOPE FAILURE: The building site is located away from potential earthquake- induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure.	5.4.3.1	A.6.1.2	
	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated.	5.4.3.1	A.6.1.3	
High Seismic Foundation (city (Complete the Following Items in Addition to the Items for Moderate Seismi Configuration	city)		
	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force- resisting system at the foundation level to the building height (base/height) is greater than 0.6 <i>S</i> ₂ .	5.4.3.3	A.6.2.1	
CNC N/A U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C.	5.4.3.4	A.6.2.2	

October 26, 2023

Figure 14 - Tier 1 Screening - Collapse Prevention Structural Checklist for Building Types W2 - Wood Light Frames, City Hall Second Floor

Table 17-6. Collapse Prevention Structural Checklist for Building Type W2

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low and Mode Seismic-Force	erate Seismicity -Resisting System		2
C NC N/A U	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2.	5.5.1.1	A.3.2.1.1
C NC N/A U	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: Structural panel sheathing 1,000 lb/ft Diagonal sheathing 700 lb/ft Straight sheathing 100 lb/ft All other conditions 100 lb/ft	5.5.3.1.1	A.3.2.7.1
C NC N/A U	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not	5.5.3.6.1	A.3.2.7.2
CNC N/A U	rely on exterior stucco walls as the primary seismic-force-resisting system. GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building.	5.5.3.6.1	A.3.2.7.3
CNC N/A U	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces.	5.5.3.6.1	A.3.2.7.4
	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor.	5.5.3.6.2	A.3.2.7.5
	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1.	5.5.3.6.3	A.3.2.7.6
	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels.	5.5.3.6.4	A.3.2.7.7
C IC N/A U	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces.	5.5.3.6.5	A.3.2.7.8
Connections C NC N/A U	WOOD POSTS: There is a positive connection of wood posts to the foundation.	5.7.3.3	A.5.3.3
C NC N/A U	WOOD SILLS: All wood sills are bolted to the foundation.	5.7.3.3	A.5.3.4
	GIRDER–COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support.	5.7.4.1	A.5.4.1
High Seismicit Connections	y (Complete the Following Items in Addition to the Items for Low and Moder	ate Seismicit	y)
	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft (1.8 m) or less with acceptable edge and end distance provided for wood and concrete.	5.7.3.3	A.5.3.7
CNC N/A U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints.	5.6.1.1	A.4.1.1
CNC N/A U	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation.	5.6.1.1	A.4.1.3
	DIAPHRAGM REINFORCEMENT AT OPENINGS: There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension.	5.6.1.5	A.4.1.8
	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered.	5.6.2	A.4.2.1
C NC N/A U	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing.	5.6.2	A.4.2.2
CNCN/A U	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and have aspect ratios less than or equal to 4 to 1	5.6.2	A.4.2.3
CNC N/A U	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1

October 26, 2023

Figure 15 - Tier 1 Screening - Collapse Prevention Structural Checklist for Building Type RM1 - Reinforced Masonry Bearing Walls with flexible diaphragms, City Hall Second Floor

Table 17-34. Collapse Prevention Structural Checklist for Building Types RM1 and RM2

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low and Mod Seismic-Ford	derate Seismicity e-Resisting System		22 - 22 - 22 - 14 - 14 -
C NC N/A U	REDUNDANCY: The number of lines of shear walls in each principal direction is	5.5.1.1	A.3.2.1.1
	SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than 70 lb/in. ² (0.48 MPa).	5.5.3.1.1	A.3.2.4.1
CNC N/A U	REINFORCING STEEL: The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in. (1220 mm), and all vertical bars extend to the top of the walls.	5.5.3.1.3	A.3.2.4.2
Stiff Diaphra	gms		
	TOPPING SLAB: Precast concrete diaphragm elements are interconnected by a continuous reinforced concrete topping slab.	5.6.4	A.4.5.1
C IC N/A U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7.	5.7.1.1	A.5.1.1
	WOOD LEDGERS: The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers.	5.7.1.3	A.5.1.2
	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls.	5.7.2	A.5.2.1
	TOPPING SLAB TO WALLS OR FRAMES: Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for transfer of forces into the shear wall or frame elements.	5.7.2	A.5.2.3
CNC N/A U CNC N/A U	FOUNDATION DOWELS: Wall reinforcement is doweled into the foundation. GIRDER–COLUMN CONNECTION: There is a positive connection using plates,	5.7.3.4 5.7.4.1	A.5.3.5 A.5.4.1
High Seismic	connection hardware, or straps between the girder and the column support. ity (Complete the Following Items in Addition to the Items for Low and Moder	rate Seismicit	y)
C NC N/A U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length	5.6.1.3	A.4.1.4
	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long.	5.6.1.3	A.4.1.6
Elexible Diaph	ragms		
C NC N/A U C NC N/A U	CROSS TIES: There are continuous cross ties between diaphragm chords. OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to	5.6.1.2 5.6.1.3	A.4.1.2 A.4.1.4
	the snear waits are less than 25% of the wall length. OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2 4 m) long	5.6.1.3	A.4.1.6
CNC N/A U	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered	5.6.2	A.4.2.1
CNC N/A U	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural papels or diaponal sheathing	5.6.2	A.4.2.2
CNCN/A U	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3
C NC N/A U	OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1
Connections CNC N/A U	STIFFNESS OF WALL ANCHORS: Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. (3 mm) before engagement of the anchors.	5.7.1.2	A.5.1.4
Note: C = Com	poliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.		

October 26, 2023

Figure 16 - Tier 1 Screening - Collapse Prevention Structural Checklist for Building Type RM2 - Reinforced Masonry Bearing Walls with Stiff Diaphragms City Hall First Floor and Basement

Table 17-34. Collapse Prevention Structural Checklist for Building Types RM1 and RM2

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference	
Low and Mod	lerate Seismicity e-Resisting System			•
C NC N/A U	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2	5.5.1.1	A.3.2.1.1	
	SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than 70 lb/in. ² (0.48 MPa).	5.5.3.1.1	A.3.2.4.1	While stress check is Compliant for Life Safety, it is non-compliant for
CNC N/A U	REINFORCING STEEL: The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in. (1220 mm), and all vertical bars extend to the top of the walls.	5.5.3.1.3	A.3.2.4.2	
Stiff Diaphrag C NO N/A U	gms TOPPING SLAB: Precast concrete diaphragm elements are interconnected by a continuous reinforced concrete topping slab.	5.6.4	A.4.5.1	
Connections CNC N/A U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7.	5.7.1.1	A.5.1.1	
C NC N/A U	WOOD LEDGERS: The connection between the wall panels and the diaphragm	5.7.1.3	A.5.1.2	While shear walls are connected to
C NO N/A U	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls	5.7.2	A.5.2.1	diaphragms, strength of connection in transferring lateral loads is
C NC N/A U	TOPPING SLAB TO WALLS OR FRAMES: Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for trapefor of forces into the shear well or frame elements	5.7.2	A.5.2.3	potentially insufficient
	FOUNDATION DOWELS: Wall reinforcement is doweled into the foundation.	5734	A.5.3.5	
CNC N/A U	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection bardware, or straps between the girder and the column support	5.7.4.1	A.5.4.1	
High Seismic	ty (Complete the Following Items in Addition to the Items for Low and Model	rate Seismicity	()	
C NC N/A U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length	5.6.1.3	A.4.1.4	
CNC N/A U	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long.	5.6.1.3	A.4.1.6	
Flexible Diaph	ragms			
C NC N/A U C NC N/A U	CROSS TIES: There are continuous cross ties between diaphragm chords. OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to	5.6.1.2 5.6.1.3	A.4.1.2 A.4.1.4	
	the shear walls are less than 25% of the wall length. OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than	5.6.1.3	A.4.1.6	
	8 ft (2.4 m) long. STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios	5.6.2	A.4.2.1	
C NCN/AU	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of	5.6.2	A.4.2.2	
C NCN/AU	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3	
	OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1	
Connections C NC(N/A) U	STIFFNESS OF WALL ANCHORS: Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. (3 mm) before engagement of the anchors.	5.7.1.2	A.5.1.4	_

October 26, 2023

Figure 17 - Tier 1 Screening - Collapse Prevention Structural Checklist for Building Types C2 concrete shear walls with stiff concrete diaphragms City Hall First Floor and Basement

Table 17-24. Collapse Prevention Structural Checklist for Building Types C2 and C2a

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference	
Low and Mod Seismic-Force	erate Seismicity e-Resisting System			<u></u>
	COMPLETE FRAMES: Steel or concrete frames classified as secondary components form a complete vertical-load-carrying system.	5.5.2.5.1	A.3.1.6.1	
CNC N/A U	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2.	5.5.1.1	A.3.2.1.1	
CNC N/A U	SHEAR STRESS CHECK: The shear stress in the concrete shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the greater of 100 lb/in. ² (0.69 MPa) or $2\sqrt{f_{e}}$.	5.5.3.1.1	A.3.2.2.1	
CNC N/A U	REINFORCING STEEL: The ratio of reinforcing steel area to gross concrete area is not less than 0.0012 in the vertical direction and 0.0020 in the horizontal direction.	5.5.3.1.3	A.3.2.2.2	
Connections C NC N/A U	WALL ANCHORAGE AT FLEXIBLE DIAPHRAGMS: Exterior concrete or masonry walls that are dependent on flexible diaphragms for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Outlet Chock chock presedure of Section 4.4.2.2.	5.7.1.1	А.5.1.1 Г	While shore walls are connected to
	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of	5.7.2	A.5.2.1	diaphragms, strength of connection i transferring lateral loads seems is
CNC N/A U	FOUNDATION DOWELS: Walls reinforcement is doweled into the foundation with vertical bars equal in size and spacing to the vertical wall reinforcing directly about the foundation.	5.7.3.4	A.5.3.5	potentially insufficient
High Seismici	ity (Complete the Following Items in Addition to the Items for Low and Mode	rate Seismicit	y)	
C NC N/A U	e-Resisting System DEFLECTION COMPATIBILITY: Secondary components have the shear canactive to develop the flavural strength of the components.	5.5.2.5.2	A.3.1.6.2	
C NCN/AU	AT SLABS: Flat slabs or plates not part of the seismic-force-resisting system have continuous bottom steel through the column joints.	5.5.2.5.3	A.3.1.6.3	
C NC N/AU	COUPLING BEAMS: The ends of both walls to which the coupling beam is attached are supported at each end to resist vertical loads caused by overturning.	5.5.3.2.1	A.3.2.2.3	
Diaphragms (Stiff or Flexible)	5611	A 1 1 1	
	floors and do not have expansion joints.	5.0.1.1	A.4.1.1	
CNC N/A U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length.	5.6.1.3	A.4.1.4	
Flexible Diaph	Tragms	5612	A 1 1 2	
C NC N7AU	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered.	5.6.2	A.4.2.1	
	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing.	5.6.2	A.4.2.2	
	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3	
	OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1	
Connections C NC N/AU	UPLIFT AT PILE CAPS: Pile caps have top reinforcement, and piles are anchored to the pile caps.	5.7.3.5	A.5.3.8	

October 26, 2023

Figure 18 - Tier 1 Screening - Collapse Prevention Basic Configuration Checklist (Reproduced herein from ASCE 41-17, Table 17-2), HOA Building

Table 17-2. Collapse Prevention Basic Configuration Checklist

Status	Evaluation Statement		Commentary Reference	
Low Seismici	ty			
Building Syst	em—General			
	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation	5.4.1.1	A.2.1.1	
CNC N/A U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity.	5.4.1.2	A.2.1.2	
	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure.	5.4.1.3	A.2.1.3	
Building Syst	em—Building Configuration			
	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above.	5.4.2.1	A.2.2.2	
	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above.	5.4.2.2	A.2.2.3	
	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force- resisting system are continuous to the foundation.	5.4.2.3	A.2.2.4	
C NC N/A U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines.	5.4.2.4	A.2.2.5	
CNC N/A U	MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered.	5.4.2.5	A.2.2.6	
CNC N/A U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension.	5.4.2.6	A.2.2.7	
Moderate Seis	smicity (Complete the Following Items in Addition to the Items for Low Seismici	ty)		
Geologic Site	Hazards			
	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building.	5.4.3.1	A.6.1.1	
CNC N/A U	SLOPE FAILURE: The building site is located away from potential earthquake- induced slope failures or rockfalls so that it is unaffected by such failures or is canable of accommodating any predicted movements without failure	5.4.3.1	A.6.1.2	
CNC N/A U	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated.	5.4.3.1	A.6.1.3	
High Seismic Eoundation C	ity (Complete the Following Items in Addition to the Items for Moderate Seismic onfiguration	ity)		
	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force- resisting system at the foundation level to the building height (base/height) is greater than 0.6.5.	5.4.3.3	A.6.2.1	
C NC N/A U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C.	5.4.3.4	A.6.2.2	
Noto: C - Cor	nations NC - Noncompliant N/A - Not Applicable, and LL - Unknown			

October 26, 2023

Figure 19 - Tier 1 Screening - Collapse Prevention Structural Checklist for Building Types W2 - Wood Light Frames, HOA Second Floor

Table 17-6. Collapse Prevention Structural Checklist for Building Type W2

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference	
Low and Mode	erate Seismicity -Resisting System			
CNC N/A U	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2.	5.5.1.1	A.3.2.1.1	
	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: Structural panel sheathing 1,000 lb/ft Diagonal sheathing 700 lb/ft Straight sheathing 100 lb/ft All other conditions 100 lb/ft	5.5.3.1.1	A.3.2.7.1	
C NC N/A U	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not	5.5.3.6.1	A.3.2.7.2	
CNC N/A U	rely on exterior stucco walls as the primary seismic-force-resisting system. GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building.	5.5.3.6.1	A.3.2.7.3	
CNC N/A U	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces.	5.5.3.6.1	A.3.2.7.4	
C NC N/A U	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor.	5.5.3.6.2	A.3.2.7.5	
	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1.	5.5.3.6.3	A.3.2.7.6	
	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels.	5.5.3.6.4	A.3.2.7.7	
	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces.	5.5.3.6.5	A.3.2.7.8	
Connections	WOOD POSTS: There is a positive connection of wood posts to the foundation	5733	4533	
C NC N/A U	WOOD SILLS: All wood sills are bolted to the foundation.	5.7.3.3	A.5.3.4	
	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support.	5.7.4.1	A.5.4.1	
High Seismicit	ty (Complete the Following Items in Addition to the Items for Low and Modera	ate Seismicit	y)	
C NC N/A U	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft (1.8 m) or less with acceptable edge and end distance provided for wood and concrete.	5.7.3.3	A.5.3.7	
Diaphragms CNC N/A U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints	5.6.1.1	A.4.1.1	
CNC N/A U	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation.	5.6.1.1	A.4.1.3	
	DIAPHRAGM REINFORCEMENT AT OPENINGS: There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension.	5.6.1.5	A.4.1.8	
C NC N/A U	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered.	5.6.2	A.4.2.1	
	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing.	5.6.2	A.4.2.2	
	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and have aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3	It is not clear whether sheathing is blocked.
C NC N/A U	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1	

October 26, 2023

Figure 20 - Tier 1 Screening - Collapse Prevention Structural Checklist for Building Types RM2 - Reinforced Masonry Bearing Walls with Stiff Diaphragms, HOA First Floor

Table 17-34. Collapse Prevention Structural Checklist for Building Types RM1 and RM2

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low and Mod Seismic-Forc	lerate Seismicity e-Resisting System		
C NC N/A U	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2	5.5.1.1	A.3.2.1.1
C NC N/A U	SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than 70 Ib/in^2 (0.48 MPa)	5.5.3.1.1	A.3.2.4.1
CNC N/A U	REINFORCING STEEL: The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in. (1220 mm), and all vertical bars extend to the top of the walls.	5.5.3.1.3	A.3.2.4.2
Stiff Diaphrag	yms		
C NC N/A U	TOPPING SLAB: Precast concrete diaphragm elements are interconnected by a continuous reinforced concrete topping slab.	5.6.4	A.4.5.1
Connections			
	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7.	5.7.1.1	A.5.1.1
	WOOD LEDGERS: The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers.	5.7.1.3	A.5.1.2
C NC N/A U	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls.	5.7.2	A.5.2.1
	TOPPING SLAB TO WALLS OR FRAMES: Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for transfer of forces into the shear wall or frame elements.	5.7.2	A.5.2.3
C NC N/A U	FOUNDATION DOWELS: Wall reinforcement is doweled into the foundation.	5.7.3.4	A.5.3.5
CNC N/A U	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support.	5.7.4.1	A.5.4.1
High Seismic	ity (Complete the Following Items in Addition to the Items for Low and Moder	rate Seismicit	y)
CNC N/A U	gms OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to	5.6.1.3	A.4.1.4
	the shear walls are less than 25% of the wall length. OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long.	5.6.1.3	A.4.1.6
Flexible Diaph	ragms		
C NC N/A U	CROSS TIES: There are continuous cross ties between diaphragm chords.	5.6.1.2	A.4.1.2
C NC NHA U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length.	5.6.1.3	A.4.1.4
	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long.	5.6.1.3	A.4.1.6
C NC N/AU	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered.	5.6.2	A.4.2.1
C NCN/A U	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural pagels or diagonal sheathing	5.6.2	A.4.2.2
	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3
	OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1
Connections		F 7 4 0	A = 4 4
C NC N/A U	STIFFNESS OF WALL ANCHORS: Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. (3 mm) before engagement of the anchors.	5.7.1.2	A.5.1.4
Note: C = Com	pliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.		

October 26, 2023

Figure 21 - Tier 1 Screening - Collapse Prevention Structural Checklist for Building Types C2 concrete shear walls and concrete diaphragms HOA First Floor

Table 17-24. Collapse Prevention Structural Checklist for Building Types C2 and C2a

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low and Mod	erate Seismicity		
Seismic-Force	e-Resisting System		
C NCN/A U	COMPLETE FRAMES: Steel or concrete frames classified as secondary components form a complete vertical-load-carrying system.	5.5.2.5.1	A.3.1.6.1
C NC N/A U	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2.	5.5.1.1	A.3.2.1.1
CNC N/A U	SHEAR STRESS CHECK: The shear stress in the concrete shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the greater of 100 lh/ln^2 (0.69 MPa) or 2. $\sqrt{f'}$	5.5.3.1.1	A.3.2.2.1
	REINFORCING STEEL: The ratio of reinforcing steel area to gross concrete area is not less than 0.0012 in the vertical direction and 0.0020 in the horizontal direction.	5.5.3.1.3	A.3.2.2.2
Connections C NC N/AU	WALL ANCHORAGE AT FLEXIBLE DIAPHRAGMS: Exterior concrete or masonry walls that are dependent on flexible diaphragms for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Ouick Check procedure of Section 4.4.3.7.	5.7.1.1	A.5.1.1
	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of	5.7.2	A.5.2.1
CNC N/A U	FOUNDATION DOWELS: Wall reinforcement is doweled into the foundation with vertical bars equal in size and spacing to the vertical wall reinforcing directly above the foundation	5.7.3.4	A.5.3.5
High Seismici	ty (Complete the Following Items in Addition to the Items for Low and Moder	ato Soismicit	(V)
Solemic-Eoroc	Posieting System	ate Seismich	y)
C NC N/A U	DEFLECTION COMPATIBILITY: Secondary components have the shear	5.5.2.5.2	A.3.1.6.2
C NCN/A U	FLAT SLABS: Flat slabs or plates not part of the seismic-force-resisting system	5.5.2.5.3	A.3.1.6.3
	COUPLING BEAMS: The ends of both walls to which the coupling beam is attached are supported at each end to resist vertical loads caused by overturning	5.5.3.2.1	A.3.2.2.3
Dianhragms (Stiff or Elevible)		
CNC N/A U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level	5.6.1.1	A.4.1.1
CIC N/A U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length.	5.6.1.3	A.4.1.4
Flexible Diaph	iragms		
C NCIN/A U	CROSS TIES: There are continuous cross ties between diaphragm chords.	5.6.1.2	A.4.1.2
	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered.	5.6.2	A.4.2.1
C NC(N/A)U	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing.	5.6.2	A.4.2.2
	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3
C NC N/AU	OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1
Connections C NC N/A U	UPLIFT AT PILE CAPS: Pile caps have top reinforcement, and piles are anchored to the pile caps.	5.7.3.5	A.5.3.8

The results of stress check of seismic force resisting walls using ASCE 41-17 Tier 1 screening quick procedure are shown in Tables 1 and 2 for the City Hall Building and the HOA building, respectively. Tier 1 screening calculations are shown in Appendix A.

Floor	Direction	Type of Seismic Force Resisting Walls	Tier 1 Evaluation Results for Immediate Occupancy Performance Objectives	Tier 1 Evaluation Results for Life Safety Performance Objectives
2nd	EW	Plywood	Not Good	Not Good
				Plywood OK,
2nd	NS	Plywood and Reinforced CMU	Not Good (for both)	CMU Not good
1st	EW	Reinforced Brick and Reinforced Concrete	OK (for both)	OK (for both)
1st	NS	Reinforced Brick	Not Good	Not Good
Basement	EW	Reinforced Concrete	ОК	ОК
Basement	NS	Reinforced Brick and Reinforced Concrete	OK (for both)	OK (for both)

Table 1. City Hall Building - Tier 1 Wall Stress Check Results

Table 2. HOA Building - Tier 1 Wall Stress Check Results

Floor	Direction	Type of Seismic Force Resisting Walls	Tier 1 Evaluation Results for Immediate Occupancy Performance Objectives	Tier 1 Evaluation Results for Life Safety Performance Objectives
2nd	EW	Plywood	Not Good	Not Good
2nd	NS	Plywood	Not Good	Not Good
1st	EW	Reinforced Brick and Reinforced Concrete	ОК	ОК
1st	NS	Reinforced Brick and Reinforced CMU	ОК	ОК

Our Tier 1 analysis indicated the following potential deficiencies:

City Hall Building

- Insufficient shear capacity of plywood shear and masonry walls in resisting ASCE 41-17 specified lateral loads at the second floor east-west and north-south directions.
- Insufficient shear capacity of masonry walls in resisting ASCE 41-17 specified lateral loads at the first floor North-South Direction.
- Inadequate strength of connection between masonry shear walls and diaphragms and between masonry shear walls and foundations to transfer of lateral forces.
- Vertical elements in seismic-force-resisting system are not continues to the foundation. Vault wall at west end of second floor has an offset with the masonry wall below.
- Diagonal roof sheathing does not have sufficient capacity to transfer ASCE 41-17 specified seismic forces to the second-floor seismic force resisting walls.

October 26, 2023

HOA Building

Insufficient shear capacity of plywood shear walls in resisting ASCE 41-17 specified seismic forces at the second floor east-west and north-south directions.

Original drawings do not specify wood blocking for the roof diaphragm, nor it was accessible during our site visit to investigate the presence of wood blocking. If unblocked, it is required to add blocking or replace the existing sheathing.

TIER 2 ANALYSIS

The Tier 1 screening checks identified several potential deficiencies in the lateral system of the building. Therefore, a Tier 2 evaluation is conducted during which a more detailed engineering analysis was performed to investigate the deficiencies identified in Tier 1 and to propose conceptual repairs to address those deficiencies, if necessary. The results of deficiency based seismic evaluation of seismic force resisting system using ASCE 41-17 Tier 2 analysis procedure are shown in Tables 3 and 4 for the City Hall Building and the HOA building, respectively. Table 5, shows the result of our analysis for the Fire Hose Tower and Pedestrian Bridge between HOA Building and City Hall Building. Tier 2 Analysis seismic calculations are shown in Appendix B.

Floor	Direction	Type of Seismic Force Resisting System	Tier 2 Evaluation Results for Immediate Occupancy Performance Objective	Tier 2 Evaluation Results for Life Safety Performance Objective
2nd	EW	Plywood (resisting 60% of seismic force)	Not Good	ОК
2nd	EW	Steel Braced Frames (resisting 25% of seismic force)	ОК	ОК
2nd	EW	Reinforced CMU (resisting 15% of seismic force)	ОК	ОК
2nd	NS	Plywood (resisting 14% of seismic force)	Not Good	ОК
2nd	NS	Steel Braced Frames (resisting 4% of seismic force)	ОК	ОК
2nd	NS	Reinforced CMU (resisting 82% of seismic force)	Not Good	Not Good
1st	EW	Reinforced Brick	ОК	ОК
1st	EW	Reinforced Concrete	Not Good	Not Good
1st	NS	Reinforced Brick	Not Good	Not Good
Basement	EW	Reinforced Concrete	ОК	ОК
Basement	NS	Reinforced Concrete	ОК	ОК
Basement	NS	Reinforced Brick	Not Good	Not Good

Table 3. City Hall Building - Tier 2 Analysis - Summary Results

October 26, 2023

Floor	Direction	Type of Seismic Force Resisting Walls	Tier 2 Evaluation Results for Immediate Occupancy Performance Objectives	Tier 2 Evaluation Results for Life Safety Performance Objectives
2nd	EW	Plywood	Not Good	Not Good
2nd	NS	Plywood	Not Good	Not Good
1st	EW	Reinforced Brick/CMU	ОК	ОК
1st	EW	Reinforced Concrete	ОК	ОК
1st	NS	Reinforced Brick/CMU	ОК	ОК
1st	NS	Reinforced Concrete	ОК	ОК

Table 4. HOA Building - Tier 2 Analysis - Summary Results

Table 5. City Hall Building Fire Hose Tower and Pedestrian Bridge between HOA Building and City Hall Building -Tier 2 Analysis - Summary Results

Floor	Direction	Type of Seismic Force Resisting Walls	Tier 2 Evaluation Results for Immediate Occupancy Performance Objective	Tier 2 Evaluation Results for Life Safety Performance Objective
1st	EW	connection at W8 beams	Not Good	OK
1st	NS	connection at W8 beams	Not Good	ОК
		Bridge support shear anchor connection at CMU wall		
1st	EW	at HOA Building	Not Good	Not Good
		Bridge support shear anchor connection at CMU wall		
1st	NS	at HOA Building	Not Good	Not Good

SUMMARY OF TIER 2 ANALYSIS

Tier 2 deficiency-based evaluation has indicated the following deficiencies:

City Hall Building

Insufficient capacity of roof diaphragm due to the use of 1x6 Tongue and Groove diagonal sheathing with inadequate diaphragm nail spacing and inadequate nailing pattern at diaphragm boundary zones and diaphragm and edge zones.

Insufficient capacity of top chord of roof trusses near supports.

Insufficient capacity of drag trusses at CMU vaults.

Insufficient capacity of connection between drag trusses and CMU vaults.

Higher than code allowed shear stress and inadequate shear load capacity in plywood shear walls and masonry walls resisting ASCE 41-17 specified lateral loads at the second floor east-west and north-south directions.

Potentially inadequate spacing of sill plate anchor bolts at plywood shear walls resisting ASCE 41-17 specified lateral loads at the second floor east-west and north-south directions.

Higher than code allowed shear stress and inadequate shear load capacity in masonry walls in resisting ASCE 41-17 specified lateral loads at the first floor North-South Direction.

Inadequate strength of connection between masonry shear walls and diaphragms and between masonry shear walls and foundations to transfer lateral seismic forces and maintain integrity of direct load path.

Vertical elements in seismic-force-resisting system are not continues to the foundation. Vault wall at west end of second floor has an offset with the masonry wall below.

Insufficient capacity of Tension Tie-Rod in both orthogonal directions at the Fire Hose Tower at the first-floor level.

Insufficient shear capacity of embed anchors of the pedestrian bridge beam support at the CMU wall of the HOA Building.

HOA Building

Higher than code allowed shear stress and inadequate shear load capacity in plywood shear walls and masonry walls resisting ASCE 41-17 specified lateral loads at the second floor east-west and north-south directions.

Inadequate spacing of sill plate anchor bolts at plywood shear walls resisting ASCE 41-17 specified lateral loads at the second floor east-west and north-south directions.

Higher than code allowed shear stress and inadequate shear load capacity in masonry walls in resisting ASCE 41-17 specified lateral loads at the first floor east-west and north-south directions.

Original drawings do not specify wood blocking for the roof diaphragm, nor it was accessible during our site visit to investigate the presence of wood blocking. If unblocked, it is required to add blocking or replace the existing sheathing.

RECOMMENDATIONS

Figures 22 and 23 show a schematic plan for the recommended seismic upgrades of City Hall and HOA buildings, respectively. The following conceptual upgrades are recommended (numbers in parentheses correspond the work item identified in Figures 22 and 23:

- 1. Replace diagonal sheathing at the roof of the City Hall Building with straight sheathing running perpendicular to 2 x 8 roof rafters and provide adequate roof diaphragm nailing (2.01).
- 2. Replace roof sheathing and provide roof diaphragm blocking and adequate nailing to meet or exceed seismic force demand at the roof of HOA building (2.01).
- 3. Modify steel truss cross section to meet structural load demand at the Top chord of roof steel trusses (2.02).
- 4. Modify steel truss cross section to meet structural load demand at the Bottom chord of Roof Drag Steel trusses (2.03).
- 5. Modify connection between Roof Steel Truss #4 and Truss #5 to transfer seismic lateral forces to the CMU vault located between lines 3 and 4 (2.04).
- 6. Modify connection between Roof Steel Truss #9 to transfer seismic lateral forces to the CMU vault located between lines 6 and 7 (2.04).

- 7. Provide additional lateral support at Bottom chords to transfer seismic lateral forces to the CMU vaults in the east-west direction (2.05).
- 8. Provide additional lateral shear stiffness to plywood shear walls to meet or exceed allowable shear stress demand at the City Hall Building and the HOA Building (2.06 and 2.07).
- 9. Provide adequate anchorage at the base of plywood shear walls to meet or exceed allowable shear demand at the City Hall Building and the HOA Building (2.09).
- 10. Increase lateral shear stiffness of masonry shear walls to meet or exceed allowable shear demand at the City Hall Building (2.08).
- 11. Provide additional anchorage at the base and at the diaphragm level of masonry shear walls to meet or exceed allowable shear demand at the City Hall Building and the HOA Building (2.09).
- 12. Provide adequate lateral bracing at Fire Hose Tower in both directions.
- 13. Provide additional lateral shear connection supports at the pedestrian bridge on the side of the Homeowner Association Building (2.11).

SEISMIC EVALUATION

City Hall and HOA | Palos Verdes Estates, CA

October 26, 2023

WC PROJECT No. 37-009696.02

City Hall and HOA | Palos Verdes Estates, CA

October 26, 2023

WALKER CONSULTANTS | 37

October 26, 2023

OPINION OF PROBABLE COSTS

Table 6 provides our opinion of probable construction costs for the recommended upgrades for seismic rehabilitation as described in this report. The costs were developed using pricing from our database of repair for similar type projects competitively bid in the Los Angeles area.

With the development of repair programs such as in this report, contingency funds must be anticipated and included in any budget for repairs to account for concealed, unknown, or unanticipated conditions. For this type of work, we recommend that a 20% contingency be set aside for potential changes due to unknown conditions. This contingency cost is included in the project costs. The cost estimates are based on 3rd Quarter 2023 dollars.

Work Item	Work Item Description	Estimated Cost					
1	General Conditions						
1.1	Mobilization & General Conditions	\$25,000					
2	Seismic Structural Repairs						
2.01	Replace Roof diaphragm sheathing and Clay Tiles at the City Hall Building and Roof diaphragm sheathing at the HOA Building	\$456,944					
2.02	Add additional steel members at Truss top chord members	\$72,000					
2.03	2.03 Add additional steel members at Truss bottom chord members						
2.04	Additional connections at CMU vaults for lateral force transfer in both east-west and north-south direction	\$30,000					
2.05	Additional steel bracing members at Roof Trusses at their bottom chords	\$36,000					
2.06	Strengthening of Plywood shear walls	\$199,680					
2.07	Strengthening of Plywood shear wall connections	\$30,250					
2.08	Strengthening of Masonry/Brick Shear walls	\$236,400					
2.09	Strengthening of Masonry Brick wall connections	\$30,250					
2.10	Strengthening of Fire Hose Tower lateral bracing	\$26,000					
2.11	Strengthening of Shear connections at the Bridge	\$30,000					
	Repair Subtotal	\$1,202,524					
	Prevailing Wage Variance (%40)	\$481,009					
	Recommended Contingency (20%)	\$240,505					
	Permit, Insurance Bonding (5%)	\$60,126					
	GC Profit (10%)	\$120,252					
	Geotechnical investigation	\$50,000					
	Engineering services: Prepare construction documents for seismic repairs	\$192,404					
	Project Total	\$2,346,820					

Table 6 - Opinion of Probable Costs for Conceptual Seismic Upgrades

October 26, 2023

Photo 1 City Hall North Elevation (BA1-479)

Photo 2 City Hall South Elevation (BA1-479)

October 26, 2023

Photo 3 City Hall East Elevation and Bridge Between City Hall and HOA Buildings (BA1-524)

Photo 4 City Hall West Elevation (BA1-524)

WC PROJECT No. 37-009696.02

October 26, 2023

Photo 5 HOA Building North Elevation (BA1-541)

Photo 6 HOA Building South and Partial West Elevation (BA1-575)

WC PROJECT No. 37-009696.02

October 26, 2023

Photo 7 HOA Building East Elevation (BA1-548)

Photo 8 HOA Building West Elevation and Bridge Between City Hall and HOA Buildings (BA1-536)

WC PROJECT No. 37-009696.02

October 26, 2023

Photo 9 The Fire Hose Tower (BA1-496)

October 26, 2023

APPENDIX-A - TIER 1 CALCULATIONS

ASCE 41-17 Quick Check procedures

City Hall Building Shear Wall	Stress Che	ck - Immediate	Occupancy (<u>10)</u>							
Seismic Forces - BSE-1E											
			_								
	Base Shea	r - Equation 4-1	of ASCE 41-1	17: V = CSa	W C for Shoor wall 1	story to co	ncidor mo	y yaluo fo	r vorious st	tructural cu	stome
		C= Sxs=	0.78		Seismic Mans		nsider ma	x. value lo	various si	.ructural sy	stems
		Sx1=	0.432		Seismic Maps						
		Ct=	0.02		Coefficient for Wo	od Structu	es				
		h _n =	21.5	ft	Height of building						
			0.75		Coefficient for Cor	ncrete Shea	r Wall, Plv	wood Woo	od Structur	res	
	$T = C_t$	h_n^β T=	0.20	Sec	Fundamental perio	od		Eq. 4-4			
	s	_ <u>S_{X1}</u> Sa	0.78		Response spectral	acceleratio	on Shall no	t exceed S	xs		
	Ja	- T									
		C.Sa=	1.01								
Т	otal Seism	ic Weight (W)=	1397	kips	Including roof and	exterior w	alls				
		Base Shear	1417	kips							
	Level	Wx	hx	Wx.hx ^k	Wx.hx ^k /∑Wx.hx ^k	Fx (kips)	Vj (kips)				
	Root	458	21.5	9847	0.48	675.6	675.6				
	2nd	939	11.5	10798.5 20646	0.52	/40.9	1416.6				
		Leng	gth of Shear \	Walls in EV	V Dir. (ft)	Length	of Shear V	Valls in NS	Dir. (ft)		
		Concrete	Brick	CMU	Plywood	Concrete	Brick	СМО	Plywood		
	2nd				101.3			25.5	30.0		
	1st	65.5	239.0				120.0				
	Basement	284.0				86.7					
2nd Floor:											
East West Direction											
At the second floor only plyv	vood shear	wall resist late	ral loads								
I	Plywood w	all Length EW=	101.3	ft							
	Wood	wall strength=	1000	lb/ft	Table 17-6 ASCE 41	-17					
		Shear Force=	675.6	kips							
Force in Plywood Shear Wall	s - Immedia	ate Occupancy									
	1	(V_j) —									
	$v_j = \frac{1}{M}$	$\overline{I_s} \left(\overline{A_w} \right)$			ASCE 41-17 Eq. 4-9						
N	viodificatio	n Factor (Ms.)=	1.5	Immediat	e Occupancy	ASCE 41-1	/ Table 4-8	5			
and in Diamond Channak and		V/m=	450	KIPS		1000	11. /4.	NetGood			
orces in Plywood Shear Walls	IN EW DIF:	VIJ=	2965	τισί	>	1000	ib/it	Not Good			
North-South Direction											
At the second floor plywood	shear wall	and two CMU	ault walls re	sist latera	loads						
,,											
Plywood Wall L	ength NS=	30.0	ft								
Plywood Tribu	tary Area=	1150	ft ²								
,	Roof Area=	7347	ft ²								
Plywood wall sh	ear force=	105.8	kips								
		V/m=	71	kips							
orces in Plywood Shear Walls	s in NS Dir:	Vij=	1567	lb/ft	>	1000	lb/ft	Not Good			
Force in CMU Shear Walls - Li	ife Safety										
CMU Wall L	ength NS=	25.5	ft								
CMU Tribu	tary Area=	6197	ft ²								
CMU Sh	ear Force=	380	kips								
Area of Shear W	alls in NS=	1591	in ²								
cu or orical W		1001									
Stress in CMU Shear Walls in	NS Dir:										
	1 (1)										
$v_i^{avg} =$	$\frac{1}{M}\left(\frac{V_j}{A}\right)$				ASCE 41-17 Eq. 4-9						
	$M_s \langle A_w \rangle$										
Ν	Nodificatio	n Factor (Ms.)=	1.5	Immediat	te Occupancy	ASCE 41-1	7 Table 4-8	3			
		Vij=	159		>	70	psi	Not Good			

4.1.51										
1st Floor:										
East West Direction										
At the first floor concrete an	d brick shea	ar walls resist l	ateral loads i	n the east	-west direction					
Force in Shear Walls - Immed	liate Occup	ancy								
Ste	orv Shear=	. 1416.6	kips							
	.,									
Stress in Shear Walls in FW D	1.00									
stress in shear waits in EW D	ir:		6							
Concrete Wall Le	ength EW=	65.5	π							
Brick Wall Le	ength EW=	239.0	ft							
Area of Concrete Wa	alls in EW=	7860	in ²							
Area of Brick Wa	alls in EW=	25811	in ²							
1 (V)										
$v_i^{\text{avg}} = \frac{1}{V_i} \left(\frac{V_j}{V_j} \right)$					ASCE 41 17 Eq. 4.9					
$M_s (A_w)$					ASCE 41-17 Eq. 4-3					
N	lodification	n Factor (Ms.)=	1.5	Life Safet	γ	ASCE 41-1	7 Table 4-8			
		Vij=	28	psi	<	70	psi	ОК		
North South Direction										
At the first d brick shear wall	s resist late	ral loads in the	e north-south	n direction	1					
Force in Shear Walls - Immer	liate Occup	ancv								
C+.	ny Shear-	1/16 6	kins							
50	siy snear=	1410.0	viha							
Observation of the state of the state										
Stress in Shear Walls in NS D	ir:									
Brick Wall L	ength NS=	120.0	ft							
Area of Brick W	alls in NS=	12960	in ²							
ave	$1 \langle V_i \rangle$									
$v_j^{abs} =$	$\overline{M}\left(\frac{1}{A}\right)$				ASCE 41-17 Eq. 4-9					
					ASCE 41-17 Eq. 4-5					
	a			to a second to a	0		77-61-40			
N	logification	Factor (IVIS.)=	1.5	Immedia	te Occupancy	ASCE 41-1	7 Table 4-8			
		Vij=	73	psi	>	70	psi	Not Good		
Basement:										
East West Direction										
At the basement concrete w	alls resist la	iteral loads in t	the east-wes	t direction	1					
Force in Shear Walls, Imme	liata Occur	2001								
Force in Shear Walls - Immed	nate Occup	ancy								
Ste	ory Shear=	1416.6	kips							
Stress in Shear Walls in EW D	ir:									
Concrete Walls Le	ength EW=	284.0	ft							
Area of Concrete Wa	alls in FW=	36286	in ²							
		00200								
$v_i^{\text{avg}} = \frac{1}{N} \left(\frac{v_j}{A} \right)$					ACCE 41 175- 1 0					
$M_s \langle A_w \rangle$					ASCE 41-17 Eq. 4-9					
		-								
N	1odification	n Factor (Ms.)=	1.5	Immediat	te Occupancy	ASCE 41-1	7 Table 4-8			
		Vij=	26	psi	<	100	psi	OK		
North-South Direction										
At the basement concrete an	d brick wal	ls resist lateral	l loads in the	north-sou	th direction					
and subernent concrete di	a oriek wdl	aterd	ouus in tile							
Canadia Character II.	lists C									
Force in shear walls - Immed	nate Occup	апсу	1.							
St	ory Shear=	1416.6	кірз							
Stress in Shear Walls in NS D	ir:									
Brick Walls L	ength NS=	120.0	ft							
Concrete Walls L	ength NS=	86.7	ft							
Area of Briels W	alle in NC-	12060	in ²							
Area of Brick W	ans (n NS=	17300								
Area of Concrete W	alls in NS=	10399	in '							
$1 \langle V \rangle$										
$v_j^{\text{avg}} = \frac{1}{M} \left(\frac{v_j}{M} \right)$										
$M_s (A_w)$					ASCE 41-17 Eq. 4-9					
	Andification	Eactor (Mr.)	1.5	Immediat		ASCE 41 1	7 Table 4-9			
I. I	ouncation	racior (IVIS.)=	1.5	mineulat		AGUE 41-1	7 Table 4-8	OK		
		Vij=	40	psi	< .	70	psi	UK		

City Hall Building Shear Wall	Stress Check - Li	fe Safety - LS								
Calamia Famora DCF 2F										
Seismic Forces - BSE-2E										
	Base Shear - Eq	uation 4-1 of As	SCE 41-17: V =	CSaW						
		C=	1.3		C for Shear wall -1-	story to co	nsider ma	x. value fo	r various st	ructural systems
		Sxs=	1.627		Seismic Maps					
		Sx1=	0.862		Seismic Maps					
		Ct=	0.02		Coefficient for Wo	od Structu	res			
		h _n =	21.5	ft	Height of building					
		Beta=	0.75		Coefficient for Con	crete Shea	ar Wall, Ply	wood Woo	od Structur	es
	$T = C_t h_n^{\nu}$	T=	0.20	Sec	Fundamental perio	od		Eq. 4-4		
	$S_a = \frac{S_{XI}}{T}$	Sa	1.627		Response spectral	acceleratio	on Shall no	t exceed S	xs	
	1	6.6	2.42							
	Total Saism	C.Sa=	2.12	king	Including roof and	ovtoriorw	alle			
	Total Seisili	Base Shear	2055	kins	Including root and	exterior w				
		buse shear	2555	KIP5						
	Level	Wx	hx	Wx.hx ^k	$Wx.hx^k/\Sigma Wx.hx^k$	Fx (kips)	Vj (kips)	1		
	Reaf	458	21 5	98/17	0.48	1409 3	1409 2	1		
	2nd	939	11 5	10798 5	0.52	1545 5	2954.8	1		
		555	11.5	20646	0.52	10-0.0		,		
		Lens	gth of Shear \	Nalls in EV	V Dir. (ft)	Length	of Shear V	Valls in NS	Dir. (ft)	
		Concrete	Brick	CMU	Plywood	Concrete	Brick	CMU	Plywood	
	2nd				101.3			25.5	30.0	
	1st	65.5	239.0				120.0			
	Basement	284.0				86.7				
2nd Floor:										
East West Direction										
At the second floor only plyv	vood shear wall	resist lateral lo	ads							
	Plywood w	all Length EW=	101.3	ft						
	Wood	wall strength=	1000	lb/ft	Table 17-6 ASCE 41	-17				
		Shear Force=	1409.3	кірѕ						· · · · · · · · · · · · · · · · · · ·
										· · · · · · · · · · · · · · · · · · ·
Force in Plywood Shear Wall	s - Life Safety									
	1 (V	2								
	$v_j^{\text{avg}} = \frac{1}{M} \left(\frac{r}{A} \right)$	·)			ASCE 41-17 Eq. 4-9					
	m _s (n	w]								
	Modificatio	n Factor (Ms.)=	3	Life Safet	у	ASCE 41-1	7 Table 4-8	3		
		V/m=	470	kips						
Forces in Plywood Shear	Walls in EW Dir:	Vij=	1546	lb/ft	>	1000	lb/ft	Not Good		
No als Constanting										
North-South Direction	shoorwall and t	WO CMILL.	walls rasist !	toral las 1	-					
At the second floor plywood	snear wan and t	wo civio vault	wans resist la	1080	5					
Plywood	Nall Length NS-	30 0	ft							
District	Tributany Aroa-	11E0	ft ²							
Piywood	Docf Area	1150	ft ²							
Dhamoster	roor Area=	/34/	il kins							·
Piyw000 W	an shear torce=	220.6 \//m-	KIPS 7/	kins						
Forces in Plywood Shear	Walls in NS Dir	Vii=	217 217	lb/ft	<	1000	lb/ft	ОК		
		*'J [_]	01/	-,		2000	-,			· · · · · · · · · · · · · · · · · · ·
Force in CMU Shear Walls - Li	ife Safety									
CMU	Wall Length NS=	25.5	ft							
CMU	Tributary Area=	6197	ft ²							
CN	/U Shear Force=	396	kips							
Area of She	ear Walls in NS=	1591	in ²							
Stress in CMU Shear Walls in	NS Dir:									
	$1 \langle V_i \rangle$									
$v_j^{avg} =$	$\overline{M_s}\left(\frac{J}{A_w}\right)$				ASCE 41-17 Eq. 4-9					
	Modificatio	n Factor (Ms.)=	3	Life Safet	y	ASCE 41-1	7 Table 4-8	3		
		Vij=	83		>	70	psi	Not Good		

1st Floor:									
East West Direction									
At the first floor concrete and	l brick shear wa	lls resist latera	l loads in the	east-west	direction				
Force in Shear Walls - Life Saf	etv								
	Story Shear=	2954.8	kins						
	otory offear	250 110	in po						
Stracs in Shear Walls in DW Di									
Stress in Shear Walls in Evy D			0						
Concrete w	all Length EVV=	65.5	π						
Brick W	all Length EW=	239.0	ft						
Area of Concret	e Walls in EW=	7860	in ²						
Area of Brid	k Walls in EW=	25811	in ²						
	1 (N)								
$v_i^{avg} =$	$\frac{1}{V_j}$				ASCE 41-17 Eq. 4-9				
	$M_s (A_w)$ —				A302 41 17 24.4 5				
			2	Life Cofee	-	ACCE 41.1	7.7.61.4.0		
	wouncatio	n Factor (IVIS.)=	3	Life Safet	y	ASCE 41-1	7 Table 4-8		
		Vij=	29	psi	<	/0	psi	ОК	
North South Direction									
At the first d brick shear walls	s resist lateral lo	oads in the nort	h-south dire	ction					
Force in Shear Walls - Life Saf	ety								
	Story Shear=	2954.8	kips						
Stress in Shear Walls in NS Di	r:								
Detab to	/all Longth NC-	100.0	ft						
DITCK V	an cengui ivo=	120.0	. 2						
Area of Bri	ск Walls in NS=	12960	in-						
320	$1(V_i)$ —								
$v_j^{avg} =$	$\frac{1}{M}\left(\frac{1}{A}\right)$				ASCE 41-17 Eq. 4-9				
	s (sw)								
	Modificatio	n Factor (Ms.)=	3	Life Safet	Y	ASCE 41-1	7 Table 4-8	• · · · ·	
		Vij=	76	psi	>	70	psi	Not Good	
Pasamont:									
Dasement.									
East west Direction									
At the basement concrete wa	ills resist lateral	loads in the ea	ast-west dire	ction					
Force in Shear Walls - Life Saf	ety								
	Story Shear=	2954.8	kips						
Stress in Shear Walls in EW Di	ir:								
Concrete Wa	alls Length FW=	284.0	ft						
Area of Concert		26206							
Area of Concret	e walls in Ew=	30280	In						
avg	$1(V_j)$ —								
$v_j^{-b} =$	$\overline{M_s} \left(\overline{A_w} \right)$				ASCE 41-17 Eq. 4-9				
	- \ "/								
	Modificatio	n Factor (Ms.)=	3	Life Safet	Y	ASCE 41-1	7 Table 4-8		
		Vij=	27	psi	<	100	psi	OK	
North-South Direction									
At the basement concrete an	d brick walls ros	ist lateral load	s in the north	-south dire	ection				
st the vasement concrete an	a prick wans les	sist lateral lodu	s in the north	soutrull	couon				
Fores in the entry line with out									
Force in Shear Walls - Life Saf	ely		1						
	Story Shear=	2954.8	кірз						
Stress in Shear Walls in NS Di	r:								
Brick W	alls Length NS=	120.0	ft						
Concrete W	alls Length NS=	86.7	ft						
Area of Bri	ck Walls in NS=	12960	in ²						
Area of Dir	to Malle 1. Are	12500							
Area of Concre	te walls in NS=	10399	in						
ALC	$1 \langle V_i \rangle$								
$v_j^{avg} =$	$\frac{1}{M_{e}}\left(\frac{1}{A_{e}}\right)$				ASCE 41-17 Eq. 4-9				
	3 (**W)								
	Modificatio	n Factor (Ms.)=	3	Life Safet	Y	ASCE 41-1	7 Table 4-8		
		Vii=	42	psi	<	70	psi	ОК	

WC PROJECT No. 37-009696.02

HOA Building Shear Wall	tress Check - Imm	ediate Occu	upancy (IO)						
Seismic Forces - BSE-1E									
2nd Floor Plywood Shear	Walls:								
,									
Base	Shear - Equation 4	-1 of ASCE 4	41-17: V = CS	SaW					
		C=	1.3		Shear wal	l -1-story a	bove cor	ncrete podium (rigid slab)
		Sxs=	0.78		Seismic M	laps			Figure 9
		Sx1=	0.432		Seismic M	laps			Figure 9
		Ct=	0.02		Coefficier	nt for Woo	d Structu	res	
		hn=	10	ft	Height of	walls			
		Beta=	0.75		Coefficier	nt for Woo	d Structu	res	
	Svi	T=	0.11	Sec	Fundame	ntal period	T =	$=C_t h_n^{\nu}$	Eq. 4-4
$S_a =$	$=\frac{J_{X1}}{T}$	Sa	0.78		Response	spectral a	cceleratio	on Snail not exceed Sxs	
	1								
		C.Sa=	1.01						
Secon	d Floor Sesmic We	ight (W)=	180	kips	Including	roof and e	xterior w	alls	
	Second Floor S	hear (V)=	182.5	kips					
	Plywood Wall Le	ength NS=	54	ft					
	Plywood wall Le	ngth EW=	48	ft					
	Wood wall	strength=	1000	lb/ft	Table 17-6	5 ASCE 41-1	7		
Force in Shear Walls - Imr	nediate Occupanc	Y							
av	$_{g} = 1 (V_{j}) =$								
vj	$= \frac{1}{M_s} \left(\frac{1}{A_w} \right)$				ASCE 41-1	7 Eq. 4-9			
	Modification Fac	ctor (Ms)=	1.5	Immedi	ate Occupan	су	ASCE 41	-17 Table 4-8	
		V/m=	122						
Forces in Shea	ar Walls in NS Dir:	vj=	2253	lb/ft	>	1000	lb/ft	Not Good	
Forces in Shea	r Walls in EW Dir:	vj=	2535	lb/ft	>	1000	lb/ft	Not Good	
1st Floor Conceret and Ma	sonery Walls:								
Base	Shear - Equation 4	-1 of ASCE 4	41-17: V = CS	SaW	-				
		C=	1.3		Shear wal	I -1-story			
		Sxs=	0.78		Seismic M	laps			
		Sx1=	0.432		Seismic N	laps			
		Ct=	0.02		Coefficier	nt for Struc	tures wit	h Conceret and Masonry	Shear Walls
		h _n =	17.5	ft	Height of	walls			
		Beta=	0.75		Coefficier	nt for Woo	d Structu	res	
	S	T=	0.17	Sec	Fundame	ntal period	T =	$= C_t h_n^p$	Eq. 4-4
$S_a =$	$=\frac{3X1}{T}$	Sa	0.78		Response	spectral a	cceleratio	on Shaii not exceed Sxs	
	1								
		C.Sa=	1.01						
Secon	d Floor Sesmic We	ight (W)=	473	kips	Including	roof and e	xterior w	alls	
	Second Floor S	hear (V)=	479.6	kips					
	Area of Shear Wa	alls in NS=	8076	in²					
	Area of Shear Wa	lls in EW=	7032	in ²					
Force in Shear Walls - Imr	nediate Occupanc	Y							
	$1 (V_{i})$								
v_j^{av}	$g = \frac{1}{M} \left(\frac{v_j}{A} \right)$				ASCE 41-1	7 Eq. 4-9			
	s (rw/								
	Modification Fac	ctor (Ms)=	1,5	Immedi	ate Occupan	су	ASCE 41	-17 Table 4-8	
Forces in Shea	ar Walls in NS Dir:	vj=	40		<	70	psi	ОК	
Forces in Shea	r Walls in EW Dir:	vj=	45		<	70	psi	ОК	

IOA Building Shea	r Wall Stress Check - Lif	e Safety (LS)								
eismic Forces - BS	6E-2E									
nd Floor Plywood	Shear Walls:									
	Base Shear - Equation	4-1 of ASCE	41-17: V =	CSaW						
		C=	1.3		Shear wall -1-stor	ry above co	oncrete po	dium (rigid	i slab)	
		Sxs=	1.627		Seismic Maps					
		Sx1=	0.862		Seismic Maps					
		Ct=	0.02		Coefficient for W	ood Struct	ures			
		h _n =	8.5	ft	Height of walls					
		Beta=	0.75		Coefficient for W	ood Struct	ures			
$T = C_t h_n^{\beta}$	C.	T=	0.10	Sec	Fundamental per	iod			Eq. 4-4	
	$S_a = \frac{S_{X1}}{\pi}$	Sa	1.627		Response spectra	al accelerat	ion Shall n	ot exceed	Sxs	
	• <i>T</i>									
		C.Sa=	2.12							
S	Second Floor Sesmic We	ight (W)=	180	kips	Including roof an	d exterior	walls			
	Second Floor S	hear (V)=	380.7	kips						
	Plywood Wall Le	ngth NS=	54	ft						
	Plywood wall Le	ngth EW=	48	ft						
	Wood wall	strength=	1000	lb/ft	Table 17-6 ASCE 4	1-17				
		0								
orce in Shear Wal	ls - Life Safety									
	1 (11)									
	$v_j^{\text{avg}} = \frac{1}{M} \left(\frac{V_j}{M} \right)$				ASCE 41-17 Fg. 4-	9				
	$M_s \langle A_w \rangle$									
	Modification Fac	tor (Ms)=	3	Life Safet	v	ASCE 41-1	7 Table 4-8			
				2	,					
Forces in	Shear Walls in NS Dir:	vi=	2350	lb/ft	>	1000	lb/ft	Not Good		
Forces in	Shear Walls in FW Dir:	vi=	2644	lh/ft	>	1000	lb/ft	Not Good		
i oroco ini		•]=	2011	10,10	-	1000	10/10			
st Floor Conceret	and Masonery Walls:									
	,									
	Base Shear - Equation	4-1 of ASCE	41-17: V =	CSaW						
		C=	1.3		Shear wall -1-stor	ry				
		Sxs=	1.627		Seismic Maps					
		Sx1=	0.862		Seismic Maps					
		Ct=	0.02		Coefficient for St	ructures w	ith Concer	et and Mas	sonry Shea	ar Walls
		h =	17.5	ft	Height of walls				,	
		Poto-	0.75		Coofficient for W	and Struct	uroc			
		Dela-	0.75	See	Coefficient for w	ind	T =	$C_{nh_{n}}^{\beta}$ -	Fa 4.4	
	S_{X1}	1=	1.627	sec	Fundamental per	100	ian Challe		Eq. 4-4	
	$S_a = \frac{T}{T}$	58	1.027		Response spectra	a accelerat	ion shall h	otexceed	SXS	
			0.40							
-	and Flags Countration	C.Sa=	2.12	luine	la alcalia f					
S	Second Floor Sesmic We	ignt (W)=	4/3	KIPS kin-	including root an	a exterior	walls			
	Second Floor S	near (V)=	1000.4	кірз						
	Anna Col	lla in tro		i - 0						
	Area of Shear Wa	IIS IN NS=	8076	103						
	Area of Shear Wa	lls in EW=	7032	in"						
orce in Shear Wal	ls - Life Safety									
	$1 \langle V_i \rangle$									
	$v_j^{\text{avg}} = \frac{1}{M} \left(\frac{v_j}{A} \right)$				ASCE 41-17 Eq. 4-	9				
	$m_s \langle n_w \rangle$									
	Modification Fac	tor (Ms)=	3	Life Safet	y	ASCE 41-1	7 Table 4-8			
Forces in	Shear Walls in NS Dir:	vj=	41		<	70	psi	ОК		
Forces in	Shear Walls in EW Dir:	vi=	47		<	70	psi	ОК		
		- 1								

October 26, 2023

APPENDIX-B - TIER 2 CALCULATIONS

Deficiency Based Evaluation ASCE 41-17

October 26, 2023

City Hall Roof Weights:

Roof slope = 2.75:12

Exterior walls

City Hall Floor Weights:

horizontal projection	1.026		
Clay Tile Roofing	14 psf	4.5" thick Concrete Flooring	56.0 psf
2" (2"x6" T & G) roof sheathing	6 psf	Concretre beams	25 psf
Roof Rafters 2" x 8"	3 psf	Interior Partitions	0 psf
Steel Roof Trusses @ 15'-3" OC	3.5 psf	Exterior Partitions	0 psf
W8 & W10 transverse Steel Beams	2.5 psf	Floor covering	5 psf
Exterior walls	0 psf	Sprinkler system	1.0 psf
Interior partition walls	0 psf	HVAC duct work (8.0 psf)	8.0 psf
Sprinkler system	1.0 psf	Miscellaneous	3.0 psf
Accoustical Ceiling	1 psf	Seismic Dead Weight	98.0 psf
HVAC duct work (8.0 psf)	5.0 psf		
Miscellaneous	2.0 psf	Floor Live Load	40.0 pst
Seismic Dead Weight	38 psf		
Horizontal projection of DL	38.99 psf		
Roof Live Load	20.0 psf		
Interior partition walls	15 psf		

Weight of City Hall Building Roof and Floor Diaphragms

			Area	Weight	Story Wt.
Levels	Assembly	Unit Wt. (psf)	(sq-ft)	(kips)	(kips)
	Roof	38.99	9114	355.31	
Roof	Exterior Wall	23	4110	47.27	458.13
	Interior Wall	15	7408	55.56	
	Floor	98	7408	725.98	
2nd	Exterior Wall	23	4418	101.61	938.72
	Interior Wall	15	7408	111.12	
	Floor	0	7408	0.00	
Basement	Exterior Wall	0	4110	0.00	0.00
	Interior Wall	0	7408	0.00	

20 - 25 psf

Seismic Dead Wt. = 1396.85 kips

October 26, 2023

Weight of City Hall Building Fire Hose Tower

			Area	Weight	Story Wt.
Levels	Assembly	Unit Wt. (psf)	(sq-ft)	(kips)	(kips)
	Roof	15.00	9	0.14	
Roof	Exterior Wall	30	42	0.63	0.77
	Interior Wall	0	9	0.00	
	Floor	10	25	0.25	
2nd Tier	Exterior Wall	20	130	2.60	2.85
	Interior Wall	0	25	0.00	
	Floor	10	49	0.49	
1st Tier	Exterior Wall	20	294	5.88	6.37
	Interior Wall	0	49	0.00	

Seismic Dead Wt. = 9.99 kips

Table 13.5-1 Coefficients for Architectural Components

Other flexible components

High-deformability elements and attachments

a _p =	2.5
R _p =	3.5
Ω _o =	2.5
I _p =	1.5
h =	15.5 ft

Fire Hose Tower Seismic Forces (Two Orthogonal Directions)

Level	w _x (kips)	z (ft.)	F _p (k)	F _{p (max)} (k)	$F_{p {min}}$ (k)	М _{отм} (k-ft)
Top Tier	0.46	20.5	0.554	0.852	0.160	1.941
2nd Tier	1.87	17	1.996	3.501	0.656	14.917
1st Tier	7.67	10.5	6.038	14.358	2.692	78.313

DCR < 1.25 is OK for Immediate Occupancy

							Tension	
						Force in	Capacity of	
	Frame Width	No. of				Tension Tie	Tie Rod	DCR
Level	(ft.)	Cols	P _{DL} (kips)	P _{comp} (kips)	P _n (kips)	Rod (kips)	(kips)	(Tension)
Top Tier	3.0	2.0	0.191	0.515	50.1			
2nd Tier	4.5	2.0	0.904	2.561	36.1			
1st ⊺ier	6.5	2.0	2.496	8.520	38.1	17.177	11.137	1.542

ATC Mapped and Site-Specific Geotechnical Seismic Design Parameters

		Mapped	Site Specific
Hazard Level	Parameter	Value	Value
DCE 1E	S _{xs}	0.78	
D3C-IC	S _{x1}	0.432	
DEE DE	S _{xs}	1.356	
D3E-ZE	S _{x1}	0.862	
DCE 1N	S _{xs}	1.234	
D2C-1IV	S _{x1}	0.761	
DCE 2N	S _{xs}	1.851	
BSE-ZIN	S _{x1}	1.142	

		City Hall B	uilding	Seismic Par	ameters	;	
	AS	CE 41-17 Seis	mic Paran	neters (BSE-1E)		
Seismic Imp	ortance Fa	actor, I _E				1.25	
Response M	odificatio	n Coefficient,	R (North-	South Directio	n)	5	
Response M	odificatio	n Coefficient,	R (East-W	/est Direction)		5	
Deflection A	mplificati	on Factor, C _d				3.5	
Response sp	ectral acc	eleration at s	hort perio	d, S _s =		1.170	g
Response sp	ectral acc	eleration at a	period 1s	ec, S ₁ =		0.381	g
Soil Site Clas	s					D	
Site Coefficie	ent, F _a					1.0	
Site Coefficie	ent, F _v					1.7	
Design respo	onse spec	tral accelerati	on at sho	rt period, S _{xs} =		0.780	g
Design respo	onse spec	tral accelerati	on at a pe	riod 1sec, S _{X1}	=	0.432	g
BSE-1E conv	ersion fac	tor for S _s =				0.575	x BSE-2E S _s
BSE-1E conv	ersion fac	tor for S ₁ =				0.501	x BSE-2E S ₁
Seismic Desi	gn Catego	ory, SDC				D	-
Approximate	e Fundam	ental Period,	T _a =			0.20	sec
Calculated T	ime Perio	d (North-Sout	h Directio	n) =		0.170	sec
Calculated T	ime Perio	d (East-West	Direction)	=		0.170	sec
					T _s =	1.805	sec
					T. =	0.361	sec
					B ₁ =	1.0024	
					a =	60	(Site Class D)
					C _m =	1.0	(1-2 story concrete shear wall building)
					$C_1C_2 =$	1.147	
					$C_1C_2 =$	1.107	
					S., =	0.778	g (North- South Direction)
					S _a =	0.778	g (East - West Direction)
					0		
DCR max=	1.25	DCR min :	1	$\mu_{\text{strength}} =$	1.250		(North- South Direction)
DCR max=	1.25	DCR min :	1	$\mu_{strength} =$	1.250		(East - West Direction)
C ₁ =	1.144	C ₂ =	1.003				(North- South Direction)
C ₁ =	1.104	C ₂ =	1.003				(East - West Direction)
J =	1	C ₁ C ₂ J=	1.147				(North- South Direction)
J =	1	C ₁ C ₂ J=	1.107				(East - West Direction)
Seismic Resp	oonse Coe	fficients				0.893	(North- South Direction)
ASCE 41-17,	equation	7-21				0.862	(East - West Direction)
Pseudo Seis	mic Base S	Shear, Vy =				1239.25	kips (North-South Direction)
Pseudo Seisi	mic Base S	Shear, Vx =				1195.92	kips (East-West Direction)

October 26, 2023

Story	Forces (North-	South D Area	irection)					
Level	w _x (kips)	(sq-ft)	ΣW _x (kips)	h _x (ft.)	w _x h _x (k-ft)	Cvx	F _x (k)	ΣF _x (kips)
Roof	449.23	9114	449.23	21.5	9658.42	0.472	585.18	585.18
2nd	938.74	7408	1387.97	11.5	10795.53	0.528	654.07	1239.25
	Σ = 1387.97				20453.96	1.00	1239.25	-
Diaph	ragm Forces (N	lorth-So	outh Direc	tion)				
Diapi			F _{nv} (min)	F _{nv}			Trib Wt	
Level		F (k)	(k)	(max) (k)	F /w	F /w	f (nsf)	
Roof		585 18	652.69	1305 37	1 303	1 303	64 207	
2nd		838.16	1363.90	2727.81	0.697	0.893	113.142	
Story	Forces (East-W	est Dire Area	ection)					
Level	w _× (kips)	(sq-ft)	ΣW _x (kips)	h _x (ft.)	w _x h _x (k-ft)	C _{vx}	F _x (k)	ΣF _x (kips)
Roof	449.23	9114.00	449.23	21.5	9658.42	0.472	564.72	564.72
2nd	938.74	7408.00	1387.97	11.5	10795.53	0.528	631.20	1195.92
	Σ = 1387.97			•	20453.96	1.00	1195.92	-
Dianh	ragm Forces (F	ast-We	st Directio	n)				-
Diapi	- agin : er ees (1		Directio	,,			Trih Wt	
Level		F (k)	F (min) (k	(max) (l	F/w.	F. /w	f_ (nsf)	
Roof		564 72	652.69	1305 37	1 257	1 257	61 962	
2nd		808.85	1363.90	2727.81	0.672	0.862	109.186	
Diaphra	agm Chord Steel C	alculatio	ns (betwee	n lines 1 a	nd 7) at line A	and C		
			@ Line 3					
							Tension Chord	
						Area of	Axial, T _{CE}	DCR
Level	Wp	R	M _{p1}	T/C =	As (in^2)	W10x21	(kips)	(Chord)

Level	Wp	R_p	M _{p1}	T/C =	As (in^2)	W10x21
Roof	2.954	139.94	3314.41	80.06	0.51	6.49
2nd	5.205	246.59	5840.52	141.08	0.90	6.49

Diaphragm Chord Steel Calculations (at lines 1 and 7) @ Line 1 and 7

							Tension	
							Chord	
						Area of	Axial, T _{CE}	DCR
Level	Wp	Rp	M _{p1}	T/C =	As (in^2)	W10x21	(kips)	(Chord)
Roof	9.108	209.49	2409.16	18.21	0.12	6.49	210.28	0.09
2nd	16.050	369.16	4245.32	32.09	0.21	6.49	210.28	0.15

235.59

235.59

0.34

0.60

	LATERAL SEISMIC FO	RCES & DIAPHRAGE	I FORCES
Floor Levels	Building Factored Lateral Story Forces	Factored Diaphragm Forces	Factored Maximum Diaphragm Forces
	(kips)	(kips)	(kips)
	City Hall Building No	orth-South Direction (Se	eismic)
Roof	585.18	585.18	
2nd	654.07	838.16	
Ground	0	0	
Base	1239.25	-	
	City Hall Building - E	East-West Direction (Se	eismic)
Roof	564.72	564.72	
2nd	631.20	808.85	
Ground	0	0	
Base	1195.92	-	

WC PROJECT No. 37-009696.02

October 26, 2023

City Hall Building - Roof Trusses

Roof slope (2.75: 12) =				2.75	
Roof slope angle,			θ =	12.91 degre	e
Roof Truss span =				46.0 ft	
Truss spacing =				15.3 ft	
Roof pitch height, h =				5.27 ft	
Roof Truss Dead Load, W _D =				39 psf	
Uniform Truss DL, w _p =				594.75 lbs/ft	
Determine Strength level Vertical forces at R	loof Tru	iss ends			
Design response spectral acceleration at shor	t period	d, S _{xs} =		0.780 g	
· · ·				0	
Factored minimum Roof Dead Load, W _{11 DI} =				535.28 lbs/ft	
Factored maximum Roof Dead Load, W., or =				654.23 lbs/ft	
Factored Horizontal Seismic force (ASCE 41-1	7. BSE-1	1E) at Truss #4 =		54.83 kips	
	,			p-	
Tension uplift force due to seismic lateral loa	d =			-9.03 kips	
at a Roof Truss end					
Compression Thrust force due to seismic late	ral load	=		18.33 kips	
at a Roof Truss end					
Determine (ASD) Service level Vertical forces	s at Roo	of Truss ends			
Design response spectral acceleration at shor	t period	d, S _{x5} =		0.780 g	
				-	
Service Level minimum Roof Dead Load, Wn	=			535.28 lbs/ft	
Service level maximum Roof Dead Load, Wor	=			654.23 lbs/ft	
ASD Horizontal Seismic force at Truss #4 & 5	=			39.17 lbs	
Tension uplift force due to seismic lateral loa	d =			-9.97 lbs	
at a Roof Truss end					
Compression Thrust force due to seismic late	ral load	=		17.39 lbs	
at a Roof Truss end					
knowledge factor =	1.0				
Factor of expected Strength =	1.1				
Fy =	33	ksi			

October 26, 2023

Design of Clip Angle and weld at Roof Truss #4 (typical) - section B-B/S3

			m _{io} =	1.25	(for braces in t	ension)		
		Assumed						
	Angle Plate	Length of	Wold Size	Assumed	Coismis Story			
Lovel	(in)	Gusset Plate	(in)	(in)	Eorce (kins)			
Boof	0 375	5 75	0.25	13.75	585 18			
1001	0.575	5.75	0.25	10.70	565.10			
	Tension		Tension	1/4" filled				
	Force at	Tension	Capacity of	weld Tension				
	Roof Truss	Force at	Gusset PL.	Capacity	DCR (Tension)	DCR (Tension)		
	(kips)	Weld (kips)	(kips)	(kips)	Gusset PL	Weld		
Roof	9.35	9.35	78.27	66.35	0.12	0.14		
Design of Tru	ss and W10x2	21 edge beam	connection (i	.e, section B-B	s/s3)			
A-307 bolts	Fat =	45ksi	F = 27 ksi					
	- 100							
	Cap Plate	Width of	Size of		Tension Force	Comp. Force		
	thickness	Cap Plate	Anchor Bolts	Number of	at Roof Truss	at Diagonal		
Level	(in.)	(in.)	(in)	Anchor Bolts	(kips)	Brace (kips)		
Roof	0	0	0.625	4	9.35	0.00		
	Tension							
	Force at	Shear Force	Tension		Tension			
	Anchor	at Anchor	Stress in	Shear stress	Capacity of	Shear Capacity		
	Bolts at Cap	Bolts at Cap	Anchor Bolts	in Anchor	Anchor Bolts	of Anchor	DCR (tension)	DCR (Shear) at
	PL (kips)	PL (kips)	(ksi)	Bolts (ksi)	(kip-ft)	Bolts (kips)	at Bolts	Bolts
Roof	9.4	27.42	7.62	22.34	18.22	15.93	0.51	1.721
3		Stress limit	4.5	2.7				

1934 - 1967 - ASTM A9 (building) , Fy = 33ksi Area of 2 L 4 x 3 1/2 = 5.36 in^2

Roof Diaphragm In-plane Drag Forces at Truss #4 & 5 (i.e., drag trusses parallel to CMU vault below roof trusses)

Level	CMU vault Length (ft.)	Diaphrag m Force (kips)	Seismic Story Force (kips)	Truss #4 & 5 Collector Force (kips)	Diaphragm Force at Truss #4 & #5 (kips)	Bottom Chord Truss Force at Truss #4	Drag Force at two sides of CMU vault	Drag Force at exterior end CMU vault	Drag Steel (in^2)	Additional Drag Steel Req'd. (in^2)	Anchor bolts & Steel Conn. per G/S-8	No. of sides of CMU vault with shear	Truss Shear Transfer AB's (kip/ft)
Roof	16.33	564.72	564.72	298.32	298.32	3.24	149.16	0.00	4.57	0.00	5.06	2	9.134

Roof Diaphragm In-plane Drag Force at Truss #9 (i.e., drag truss parallel to CMU vault below roof truss)

						Chord					Anchor	sides of	Truss
			Seismic	Truss #9		Truss				Additional	bolts &	CMU	Shear
		Diaphrag	Story	Collector	Diaphragm	Force at	Drag	Drag Force	Drag	Drag Steel	Steel	vault with	Transfer
	CMU vault	m Force	Force	Force	Force at Truss	Truss #9	Force at	at ends of	Steel	Req'd.	Conn. per	shear	AB's
Level	Length (ft.)	(kips)	(kips)	(kips)	#9 (kips)	(kip/ft)	CMU vault	CMU vault	(in^2)	(in^2)	H/S-5	dowels	(in^2/ft)
Roof	11.33	564.72	564.72	164.32	164.32	2.93	81.43	81.43	2.49	0.00	5.57	1	14.503

Design of OCBF Bet	Ę		kno DC	R < 1.25 i swledge fi	s OK for Imm actor =	ediate Oc 1.0	cupancy	Factor of ex	pected Str	ength =	11	_	Fy =	33 k	20			
Be Level Leng Roof 15	Diapt am m Fo th (ft.) (kip (25 564.	Se Si	Ismic / tory C. orce Fo ilps) B. (4.72 3)	VxIal omp. S rrce in eam 9.60	hear Force N In Beam a (kips) 19.50	Positive Moment at Beam (kip-ft) 33.97	Negative Moment at Beam (kip-ft) 26	Axial Capacity of Beam (kips) 212.03	Shear Capacity of Beam ((kips) 35.44	Positive Moment Capacity of Beam (kip- 42.11	Negative Moment Capacity of Beam (kip- 42.11	DCR (Axial) 0.19	DCR (Shear) (0.55	DCR (Flexure) + 0.81	DCR (Flexure) - 0.617			
Design of OCBF Col Col	umn Diaph th(ft.) (kip	s) (k	ismic Te bory Fo ips) (k	R < 1.25 k Vxial Insion rce in A Ilumn kips) Co	s OK for Imme xial Comp. I Force in (kips)	ediate Oo Shear Force in Column ii (kips)	cupancy Positive Moment (kip-ft)	Negative Moment in Column (kip-ft)	Axial Comp. Capacity (of Column	Axial Tension Capacity of Column (kips)	Shear Capacity of Column (kips)	Positive Moment Capacity of Column	Negative Moment Capacity of I Column	DCR (Axial Comp.)	DCR (Axial Tension)	DCR (Shear)	DCR (Flexure) +	DCR (Flexure) -
Roof-2nd 1. Design of Tension C	5.25 564 Nnly Brace	.72 56	54.72 :	1.50 R < 1.25 k	35.36 SOK for Immo	0.25 ediate Oo	0.5 cupancy	0.50	38.10	45.08	4.704	7.05	7.05	0.93	0.03	0.053	0.071	0.071
Br Fri Level Leng Roof-2nd <u>1</u> 5	ace Diapt ame m Fo th (ft.) (kip t.25 564.	Se Frage Si Srce Fr 72 56 (k	ismic Te tory Fo orce Dia ilps) B ilps) B 1.72 1.	insion [rrce at agonal rrace B 3.67	iaphragm Force at Diagonal race (kips) 13.67	Area of Diagonal Brace (in^2) 0.625	Tension Capacity of Diagonal 13.61	ASCE 41- 17 Brace average axial stress 22.12	1/4" weld connecti on yield 31.37	DCR (Tension) 1.00	DCR (Stress) 0.61	DCR (weld at 9 gusset PL) 0.44	Status of Tension Brace OK					
Design of Gusset Pl Gu Pl Level (i Roof-2nd 0.	ate and weld sset Assur ate Lengt kness Gus ar). Plate 375 6	lat Diago med set Wel (in.) ()	nal Brace (Ass Ass V V V V V V (in.) ((in.)	at OCBF E sumed Veld mgth St (in.) F 6.5	eam-Column ismic Story orce (kips) 564.72	Fension Force at Gusset Plate 16.16	Tension Force at Weld (kips) 16.16	Tension Capacity of Gusset PL. (kips) 61.26	1/4" filled weld Tension 31.37	DCR (Tension) Gusset PL 0.26	DCR (Tension) Weld 0.52							
Design of Beam-Co Cap thic Level (i Roof 0	lumn connec Plate Widtl kness Cap P n.) (in .75 6	tion of ar h of Sii late An L) Bol	ACCBF C Nu chor Ar ts (in) B L75	umber of Te ichor a kolts B 4	nsion Force C t Diagonal race (klps) 16.16	Comp. Force at Diagonal Brace (kips) 0.00	Tension Force at Anchor Bolts at Cap PL 11.4	Shear Force at Anchor Bolts at Cap PL 11.42 Stress limit	A-307 bol Tension Stress in Anchor Bolts (ksi) 6.46 4.5	Fint = Fint = Shear Shear stress in Anchor Bolts (ksi) 5.46 2.7	45ksi Tension Capacity of Anchor Bolts (kip- ft) 32.65	Fnv = 27 ks Shear Capacity of Anchor Bolts (kips) 24.16 24.16	DCR (tension at Bolts 0.35	DCR (Shear) at Bolts 0.473				
Design of Base Plat Base thic Level fi Roof-2nd 0 Note-Ordinary Com	e and Anchou Plate Widt kness Bas n.) Plate .75 6 centric Braces	r Bolts of h of Si: se An (in.) Bol i 0	OCBF Pipe Nu ze of Ar Ichor Ar Li75 B 1.75	• Column of Te of Column of Co bolts Co 2 2	nsion Force F at Pipe 1.50	sion Force at F Pipe Column 35.36	Force at Pipe Base Plate (kips) 1.1	Flexure Load at (kip-ft) 0.13	Capacity of Anchor Bolts 1 19.24	Shear Capacity of I Anchor Solts (kips) 26.51	Flexure Capacity of Base Plate (kip-ft) 1.276	Capacity of Base Plate (kips) 65.34	DCR (tension) at Bolts 0.08	DCR (Shear) at { Bolts 0.040	DCR Elexure) at 0.098 0.098	DCR (Shear) at Base Plate 0.011		

Level Roof

East-West direction Shear walls loads at the 2nd Level (Roof to 2nd)

9.15 ft

Wall heights =

		Applied Load	to Tested Load	Ratio	2.056	0.415	2.546	3.375	2.056	0.664	1.612	2.043	
	COLA/UCI	Data, Tested	Wall strength	(Ibs)	24034.99	24034.99	24034.99	21663.74	24034.99	24034.99	24034.99	24034.99	
			Shear Status	Check for IO	Overstress	ХО	Overstress	Overstress	Overstress	ЮК	Overstress	Overstress	
			Wall DCR	(Shear)	3.20	0.65	3.97	2.63	3.20	1.03	2.51	3.18	
		Edge Nail	Spacing	(in.)	2	2	2	2	2	2	2	2	
	Allowable	Shear 10d	(2", 2", 12")	(lbs/ft)	870	870	870	1740	870	870	870	870	
			Sheathing 1	or 2 sides	1	1	1	2	1	1	1	1	
	Wall Shear	Load, v =	$F_{tot}/(1.4*b)$	lbs/ft	2785.38	562.27	3449.85	4572.74	2785.38	899.63	2184.62	2768.84	
			Wall Aspect	Ratio	0.72	0.72	0.72	0.80	0.72	0.72	0.72	0.72	
		Shear wall	Length, b	(ft.)	12.67	12.67	12.67	11.42	12.67	12.67	12.67	12.67	100.11
17 forces				F _{tot} (Ibs)	49407.06	9973.51	61193.37	73108.90	49407.06	15957.61	38750.84	49113.68	346912.03
ASCE 41-3			ΣF_{κ}	(Ibs)	49407.06	9973.51	61193.37	73108.90	49407.06	15957.61	38750.84	49113.68	346912.03
			Wall Trib.	Area (ft^2)	1026	207.11	1270.76	1518.20	1026	331.38	804.71	1019.91	7204.07
			Wall	(grid line)	C1	0	ß	C4	A1	A2	A.3	A4	2

WC PROJECT No. 37-009696.02

Sesimic Forces on North-South Direction Plywood Shear Walls

Level Roof	F _x (k) = 585.18 kips 202.19 kips	Area -	9114 (sq-ft) 9114 (sq-ft)	t [*] =	64.21 psf 22.18 psf	(ASCE 41-17 BSE-1E, Seismic Story Force (ASCE 7-16 Seismic Story Force)	(ə
	Shear wall system = OCBF system = CMU walls =	0.75	(Wood shear walls take 75% of (Steel braced frames take 25%, (CMU shear walls take tributary	the tributary a of the tributar / area based p	srea based portion o y area based portion ortion of total story l	f total story load) \ of total story load) \oad)	
	ASCE 41-17 to ASCE 7-16	1.00	2.8942 🔶 (E	nter this value	if using ASCE 7-16 f	orces otherwise use 1)	
	Wood Shear walls shear distribution	0.137	Shear force at all wood structur	ral panels =	80.30	kips Wood S	Structural wall panels
	CMU Shear walls shear distribution factor =	0.82	Shear force at all CMU shear w	alls =	478.11	on ອີມ ເອັມ	s = 3.8
	OCBF System =	0.25	Shear force at all Ordinary Brac	ed Frames =	26.77	kips	
				Total =	585.18	kips ASCE 41-17 Seismic Stor	ry force
North-South direction Sh	ear walls loads at the 2nd Level (Roof t	(pud)	Wall	heights =	9.15 ft		

to Tested Load Applied Load Ratio 1.460 1.365 Wall strength t (lbs) Data, Tested COLA/UCI 29403.5 27506 Shear Status Check for IO Overstress Overstress Wall DCR (Shear) 2.13 Edge Nail Spacing (in.) Allowable Shear 10d (2", 2", 12") (lbs/ft) 870 870 Sheathing 1 or 2 sides F_{tot}/(1.4*b) Load, v = Wall Shear 1977.82 1850.22 lbs/ft Wall Aspect Ratio 0.59 0.63 Length, b (ft.) Shear wall 30.00 15.5 14.5 (lbs) 80299.48 40149.74 forces ŝ цí ASCE 41-17 80299.48 40149.74 ΣF_× (lbs) 40149 Wall Trib. Area (ft^2) 1667.52 833.76 222 76 (grid line) Wall Ľ

WC PROJECT No. 37-009696.02

SEISMIC EVALUATION

City Hall and HOA | Palos Verdes Estates, CA

WALKER

Sesimic Forces on East-West Direction Reinforced Concrete Masonry Shear Walls

WC PROJECT No. 37-009696.02

City Hall and HOA | Palos Verdes Estates, CA

Level Roof		F _x (k) =	585.18 kips 202.19 kips	Area =	9114 9114	(sq-ft) (sq-ft)	= ×	64.21 p 22.18 p	osf Sef	(ASCE 41-17 BSE-1E, Seism (ASCE 7-16 Seismic Story F	ic Story Force) orce)	
		Shear wall syst OCBF system =	tem = 0.	75 (Wood and 25 (Steel brac	l CMU shear ed frames ti	walls take 75% ske 25% of the t	of the total s total story loa	story load) ad)				
		ASCE 7-16 to A	ISCE 41-17	Ţ	2.8942	ļ	Enter this val	lue if using ASI	CE 7-16 forces	otherwise use 1)		
		Masonry Expe Compressive S Allowable she	cted Strength factor trength, f'm = ar stress, f _{av} =	= 1.3 2500 65	isd		Brick/Masc m _{io} = m _c = m _c =	onry walls 2 3				
East-West directi	ion Shear wall l	loads at 2nd Level	(Roof to 2nd)			Wa	ll heights =	10.00	μ.			
		ASCE 41-1	7 forces									
						Wall Shear				Wall Vertical	Slab	

			DCR Slab	(Dowels)	0.349	0.489	0.119	0.176			
	Slab	Dowels	Capacity	(sql)	63525	63525	131587.5	131587.5			
		DCR Wall	Vertical	(Dowels)	0.581	0.815	0.198	0.293			
	Wall Vertical	Dowels	Capacity	(lbs)	38115	38115	78952.5	78952.5			
			Shear Stress	Check	ок	ок	ю	ок			
			DCR (Wall	Shear)	0.338	0.474	0.115	0.171			
		Wall Shear	Stress, f, I	(bsi)	15.70	22.01	5.34	7.92			
	Wall Shear	Load, v =	F _{tot} /(1.4*b)	lbs/ft	1507.15	2113.04	512.58	760.17			
		Wall	Aspect	Ratio	0.95	0.95	0.46	0.46			
		Shear wall	thickness,	t (in)	8	8	8	8			
		Shear wall	Length,	b (ft.)	10.5	10.5	21.75	21.75		64.50	
-17 forces			Ftor	(lbs)	22155.17	31061.68	15608.18	23147.28		91972.31	
ASCE 41-			ΣF×	(Ibs)	22155.17	31061.68	15608.18	23147.28		91972.31	
				Wall Type	CMU	CMU	CMU	CMU			
			Wall Trib.	Area (ft^2)	460.08	645.04	324.12	480.68		1909.92	
			Wall	(grid line)	81	82	83	B4		Σ	

WALKER CONSULTANTS

WC PROJECT No. 37-009696.02

(Enter this value if using ASCE 7-16 forces otherwise use 1)

ļ

2.8942

-

ASCE 7-16 to ASCE 41-17

Shear wall system =

OCBF system =

(Wood shear walls take 75% of the tributary area based portion of total story load)
0.25 (Steel braced frames take 25% of the total story load)

	SEISMIC EVALUATION
City Hall and HOA	Palos Verdes Estates, CA

October 26, 2023

Sesimic Forces on North-So	uth Directior	ו Reinforced Con	icrete Maso	nry Shear Walls			
Level Roof	F _x (k) =	585.18 kips	Area =	9114 (sq-ft)	= *	64.21 psf	(ASCE 41-17 BSE-1E, Seismic Story Force)
		202.19 kips		9114 (sq-ft)		22.18 psf	(ASCE 7-16 Seismic Story Force)

			Masonry Exp.	ected Strength	h factor =	1.3			Brick/Ma:	sonry walls					
			Compressive	Strength, fm	"	2500	psi		= ⁰¹ W	2					
			Allowable shi	ear stress, f _{av =}	μ	65	psi		m _{LS} =	2					
									= °C	m					
North-Sout	th direction SI	hear wall lo	ads at 2nd Le	evel (Roof to 2	(pug			3	'all heights =	10.00	ų				
			ASCE 41-	17 forces											
								Wall Shear				Wall Vertical		Slab	
					Shear wall	Shear wall	Wall	Load, v =	Wall Shear			Dowels	DCR Wall	Dowels	
Wall	Wall Trib.		ΣF _×	F _{tot}	Length,	thickness,	Aspect	F _{tos} /(1.4*b)	Stress, f,	DCR (Wall	Shear Stress	Capacity	Vertical	Capacity	DCR Slab
(grid line)	Area (ft^2)	Wall Type	(Ibs)	(Ibs)	b (ft.)	t (in)	Ratio	lbs/ft	(psi)	Shear)	Check	(Ibs)	(Dowels)	(Ibs)	(Dowels)
38	1799	CMU	115507.87	115507.87	16.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.61	5000.34	52.09	1.122	Х	59895	1.929	99825	1.157
3.58	2051.00	CMU	131687.96	131687.96	16.5	8	0.61	5700.78	59.38	1.279	Х	59895	2.199	99825	1.319
68	2644.48	CMU	169793.36	169793.36	11	8	0.91	11025.54	114.85	2.474	Not Good	39930	4.252	66550	2.551
7B	952.00	CMU	61124.79	61124.79	11	8	0.91	3969.14	41.35	0.891	ЮК	39930	1.531	66550	0.918
Σ	7446.48		478113.97	478113.97	55.00										

L

WC PROJECT No. 37-009696.02

October 26, 2023

Torsional Analysis of Rigid I	Diaphragm	File = C:/Users/Skhan/DOCUME~1/ENGINE~1/CITYOF~3/2023CA~1/palo Software copyright ENERCALC, INC, 198	s verdes calculation 33-2019. Build:10.19	s.ec6
Lic. # : KW-06003901		WA	ALKER CONSUL	TANTS
DESCRIPTION: City Hall - CMU and Brid	k wall rigidities			
General Information		Calculations per IBC 2012,	CBC 2013, AS	CE 7-1
Applied Lateral Force in "X" Direction	100.0 k	Center of Shear Application :		
Applied Lateral Force in "Y" Direction	100.0 k	Distance from "X" datum point	71.0	ft
Note: These loads are resolved into X a	& Y components	Distance from Y datum point	20.0	п
when applied to the system of ele	ements at angular increments	Accidental Torsion values per ASCE 7-05 12.8.4.2 Ecc. as % of Maximum Dimension	5.00	%
Load Orientation Angular Increment	30.0 deg	Maximum Dimensione		
Load Location Angular Increment	15.0 deg	Along "X" Axis	142.0	ft
Center of Rigidity Location (calculated)		Along "Y" Axis	43.330	ft
"X" dist. from Datum	72.296 ft			
"Y" dist. from Datum	18.223 ft			
	Accidental Eccentricity +/-	- from "Y" Coord. of Center of Load Application:	7.10	ft
	Accidental Eccentricity +/-	from "X" Coord. of Center of Load Application	2.167	ft

ſ	Torsional Analysis of Rigid Diaphragm	File = C:\Users\Skhan\DOCUME~1\ENGINE~1\CITYOF~3\2023CA~1\palos verdes calculations.ed Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30
	Lic. # : KW-06003901	WALKER CONSULTA

DESCRIPTION: City Hall - CMU and Brick wall rigidities

Wall Information				
Label : C5	X Wall C.G. Location	51.1875 ft	Length	7.9583 ft
Wall Deflections (Stiffness) for 1.0 kip load : Along Wall "y" Dir 5.2794E-004 in Along Wall "x" Dir 3.7942E+003 in	Y Wall C.G. Location Wall Angle CCW Wall Fixity	42.96 ft 0 deg Fix-Fix	Height Thickness E - Bending E - Shear	11.5 ft 9 in 1 Mpsi 1 Mpsi
Label : C6	X Wall C.G. Location	63.049 ft	Length	8.1042 ft
Wall Deflections (Stiffness) for 1.0 kip load : Along Wall "y" Dir 5.0669E-004 in Along Wall "x" Dir 3.7258E+003 in	Y Wall C.G. Location Wall Angle CCW Wall Fixity	42.96 ft 0 deg Fix-Fix	Height Thickness E - Bending E - Shear	11.5 ft 9 in 1 Mpsi 1 Mpsi
Label : C7	X Wall C.G. Location	87.4358 ft	Length	12.33 ft
Wall Deflections (Stiffness) for 1.0 kip load : Along Wall "y" Dir 2.1451E-004 in Along Wall "x" Dir 2.4489E+003 in	Y Wall C.G. Location Wall Angle CCW Wall Fixity	42.96 ft 0 deg Fix-Fix	Height Thickness E - Bending E - Shear	11.5 ft 9 in 1 Mpsi 1 Mpsi
ANALYSIS SUMMARY	Maximum shear forces applied to res	isting elements. Eccentrici	ty with respect to Center	of Rigidity

		Max Shear a	long Member Lo	cal "y-y" Axis		Max Shear alon	g Member Loca	l "x-x" Axis
Resisting Element	Load Angle	X-Ecc (ft)	Y-Ecc (ft)	Shear Force (k)	Load Angle	X-Ecc (ft)	Y-Ecc (ft)	Shear Force (
1A	90	8.40	6.78	5.143	0	1.30	4.61	0.000
1B	90	8.40	6.78	0.332	0	1.30	4.61	0.000
1C	90	8.40	6.78	32.187	0	1.30	8.94	0.000
5A	90	8.40	6.78	51.971	0	1.30	8.94	0.000
7A	90	8.40	6.78	4.292	0	1.30	4.61	0.000
7B	90	8.40	6.78	0.277	0	1.30	4.61	0.000
7C	90	8.40	6.78	12.092	0	1.30	8.94	0.000
A1	0	8.40	6.78	2.685	90	8.40	6.78	0.000
A2	0	8.40	6.78	9.675	90	8.40	6.78	0.000
A3	0	8.40	6.78	9.675	90	8.40	6.78	0.000
A4	0	8.40	6.78	9.675	90	8.40	6.78	0.000
A5	0	8.40	6.78	2.679	90	-0.54	8.87	0.000
A6	0	8.40	6.78	2.679	90	-0.54	8.87	0.000
B1	0	1.30	8.94	2.029	90	8.40	6.78	0.000
B2	0	1.30	8.94	5.591	90	8.40	6.78	0.000
B3	0	1.30	8.94	37.421	90	8.40	6.78	0.000
C1	0	1.30	8.94	0.205	90	8.40	6.78	0.000
C2	0	1.30	8.94	0.611	90	8.40	6.78	0.000
C3	0	1.30	8.94	0.314	90	8.40	6.78	0.000
C4	0	1.30	8.94	8.559	90	8.40	6.78	0.000
C5	0	1.30	8.94	2.480	90	8.40	6.78	0.000
C6	0	1.30	8.94	2.584	90	8.40	6.78	0.000
C7	0	1.30	8.94	6.105	90	-0.54	8.87	0.000

City Hall and HOA| Palos Verdes Estates, CA

WC PROJECT No. 37-009696.02

(ASCE 41-17 BSE-1E, Seismic Story Force) (ASCE 7-16 Seismic Story Force)

161.44 psf 57.80 psf

<u>"</u>

7408 (sq-ft) 7408 (sq-ft)

Area =

1195.92 kips 428.19 kips

F_× (k) =

Level 2nd

Sesimic Forces on East-West Direction Brick Shear Walls and Reinforced Concrete Masonry Shear walls

WC PROJECT No. 37-009696.02

Brick/Masonry walls

(Enter this value if using ASCE 7-16 forces otherwise use 1)

2.7930

-

ASCE 7-16 to ASCE 41-17

Shear wall system =

1 (Brick and CMU shear walls take shear loads based on wall lateral stiffness or wall rigidities)

2 2 2

= ⁰¹ = ⁰¹ = ⁰²

							Wall Shear				Wall Vertical		Slab	
		Shear		Shear wall	Shear wall	Wall	Load, v =	Wall Shear			Dowels	DCR Wall	Dowels	
rib.		Distribution	F _{tot}	Length,	thickness,	Aspect	F _{tot} /(1.4*b)	Stress, f _v	DCR (Wall	Shear Stress	Capacity	Vertical	Capacity	DCR Slab
ft^2)	Wall Type	Factor	(Ibs)	b (ft.)	t (in)	Ratio	lbs/ft	(psi)	Shear)	Check	(Ibs)	(Dowels)	(Ibs)	(Dowels)
	CMU	0.00205	2451.64	3.06	6	3.76	572.28	5.30	0.114	УО	11107.8	0.221	18513	0.132
	CMU	0.00611	7307.08	4.54	6	2.53	1149.63	10.64	0.229	ХО	16480.2	0.443	27467	0.266
	CMU	0.00314	3755.19	3.56	6	3.23	753.45	6.98	0.150	уо	12922.8	0.291	21538	0.174
	CMU	0.08559	102358.88	14.96	6	0.77	4887.26	45.25	0.975	Хŏ	54304.8	1.885	90508	1.131
	CMU	0.02480	29658.84	7.96	6	1.44	2661.42	24.64	0.531	ж	28894.8	1.026	48158	0.616
	CMU	0.02584	30902.60	8.1	6	1.42	2725.10	25.23	0.543	хо	29403	1.051	49005	0.631
	CMU	0.06105	73010.98	12.33	6	0.93	4229.58	39.16	0.844	ж	44757.9	1.631	74596.5	0.979
	CIP	0.02029	24265.24	7.25	10	1.59	2390.66	19.92	0.310	УО	26317.5	0.922	43862.5	0.553
	CIP	0.05591	66863.94	11.67	10	0.99	4092.54	34.10	0.531	ж	42362.1	1.578	70603.5	0.947
	CIP	0.37421	447525.59	45.67	10	0.25	75.999.37	58.33	0.907	Хо	165782.1	2.699	276303.5	1.620
	CMU	0.02685	32110.48	8.67	6	1.33	2645.45	24.49	0.528	Х	31472.1	1.020	52453.5	0.612
	CMU	0.09675	115705.36	17.32	6	0.66	4771.75	44.18	0.952	ж	62871.6	1.840	104786	1.104
	CMU	0.09675	115705.36	17.32	6	0.66	4771.75	44.18	0.952	х	62871.6	1.840	104786	1.104
	CMU	0.09675	115705.36	17.32	6	0.66	4771.75	44.18	0.952	ж	62871.6	1.840	104786	1.104
	CMU	0.02679	32038.72	8.66	6	1.33	2642.59	24.47	0.527	ю	31435.8	1.019	52393	0.612
	CMU	0.02679	32038.72	8.66	6	1.33	2642.59	24.47	0.527	ж	31435.8	1.019	52393	0.612
0		1.03	1231403.96	197.05										

SEISMIC EVALUATION

City Hall and HOA | Palos Verdes Estates, CA

October 26, 2023

WALKER CONSULTANTS | 65

East-West direction Shear wall loads at 1st Level (2nd to 1st)

Wall heights = 11.50

psi (CIP walls) with Expected Strength factor = 1.5

psi (Brick and Masonry walls)

psi

1.3 2500 90 90

Masonry Expected Strength factor =

Compressive Strength, f'm = Allowable shear stress, f_{av} = Allowable shear stress, f_{av} = ŧ

ASCE 41-17 forces

Wall Area

Wall

grid line)

ป ป

8 8 8

C

B3 A1

A3

A4

A2

A5

9

82

Β

81

	WALKER CONSULTANTS
--	-----------------------

SEISMIC EVALUATION

City Hall and HOA | Palos Verdes Estates, CA

October 26, 2023

Sesimic Forces on No	th-South Directio	n Brick Shear W	alls and Rein	forced Concrete Ma	sonry Shea	r walls	
Level 2nd	F _x (k) =	1239.25 kips	Area =	7408 (sq-ft)	f _x =	167.29 psf	(ASCE 41-17 BSE-1E, Seismic Story Force)
		428.19 kips		7408 (sq-ft)		57.80 psf	(ASCE 7-16 Seismic Story Force)

Shear wall system = 1	(Brick and	CMU shear	walls take sh	ear loads based c	on wall lateral stiffness or wall rigidities)	
ASCE 7-16 to ASCE 41-17	1	2.8942	ţ	(Enter this valu	ue if using ASCE 7-16 forces otherwise use 1)	
Masonry Expected Strength factor =	1.3			Brick/Masoi	nry walls	
Compressive Strength, f'm =	2500	psi		= 01	2	
Allowable shear stress, $f_{av} =$	65	psi		= ²¹ E	2	

Brick/Masoni	m _{io} =	= ₂₁ m
	psi	psi

Allowable shear stress, $f_{av} =$

ŝ	
m _{CP}	

11.50 Wall heights =

ŧ

North-South direction Shear wall loads at 1st Level (2nd to 1st)

					,										
			ASCE 41-	-17 forces											
								Wall Shear				Wall Vertical		Slab	
			Shear		Shear wall	Shear wall	Wall	Load, v =	Wall Shear			Dowels	DCR Wall	Dowels	
Wall	Wall Trib.		Distribution	Ftoe	Length,	thickness,	Aspect	F _{tot} /(1.4*b)	Stress, f _v	DCR (Wall	Shear Stress	Capacity	Vertical	Capacity	DCR Slab
(grid line)	Area (ft^2)	Wall Type	Factor	(Ibs)	b (ft.)	t (in)	Ratio	lbs/ft	(psi)	Shear)	Check	(lbs)	(Dowels)	(lbs)	(Dowels)
ΤA		CMU	0.0514	63734.85	8.66	6	1.33	5256.92	48.68	1.048	УÓ	34293.6	1.859	57156	1.115
18		CMU	0.0033	4114.32	3	6	3.83	979.60	9.07	0.195	УÓ	11880	0.346	19800	0.208
1C		CMU	0.3219	398878.78	25.58	6	0.45	11138.13	103.13	2.221	Not Good	101296.8	3.938	168828	2.363
5A		CMU	0.5197	644052.84	40.75	6	0.28	11289.27	104.53	2.251	Not Good	161370	3.991	268950	2.395
A7		CMU	0.0429	53188.79	8.66	6	1.33	4387.07	40.62	0.875	ЮК	34293.6	1.551	57156	0.931
7B		CMU	0.0028	3432.73	3	6	3.83	817.32	7.57	0.163	Хŏ	11880	0.289	19800	0.173
7C		CMU	0.1209	149850.63	14.83	6	0.78	7217.54	66.83	1.439	Not Good	58726.8	2.552	97878	1.531
Z			1.06	1317252.95	104.48										

SEISMIC EVALUATION

City Hall and HOA| Palos Verdes Estates, CA

October 26, 2023

			V		10				
LêVêl 15t	Γ _× (K) =	428.19 kips	= paiw	7408	(sq-ft) (sq-ft)	1× =	57.80 psf	(ASCE 7-16 Seisn	-It, seismic story rorce) nic Story Force)
		-			-				
	Shear wall syster	m = 1 ()	Brick and (:MU shear w	valls take sh	ear loads based on	wall lateral stiffness or	· wall rigidities)	
	ASCE 7-16 to AS	CE 41-17	1	2.7930	ļ	(Enter this value	if using ASCE 7-16 forc	es otherwise use 1)	
	Masonry Expect	ed Strength factor =	1.3					Brick/Mason	ry walls
	Compressive Str	ength, f'm =	2500	psi				= ⁰	2
	Allowable shear	stress, f _{av} =	65	psi (Brick an	d Masonry v	valls)		= ₂₁ m	2
	Allowable shear	stress, f _{av} =	90	psi (CIP wall	s) with Expe	cted Strength facto	or = 1.5	= - 	3

Sesimic Forces on East-West Direction Brick Shear Walls and Reinforced Concrete Masonry Shear walls

East-West direction Shear wall loads at 1st Level (1st to Fdn.)

₽

10.00

Wall heights =

			ASCE 41-	17 forces											
								Wall Shear				Foundation		Slab	
			Shear		Shear wall	Shear wall	Wall	Load, v =	Wall Shear			Dowels	DCR	Dowels	
Wall	Wall Trib.		Distribution	F _{tot}	Length,	thickness,	Aspect	F _{tor} /(1.4*b)	Stress, f,	DCR (Wall	Shear Stress	Capacity	Foundation	Capacity	DCR Slab
(grid line)	Area (ft^2)	Wall Type	Factor	(lbs)	b (ft.)	t (in)	Ratio	lbs/ft	(psi)	Shear)	Check	(Ibs)	(Dowels)	(Ibs)	(Dowels)
11		CIP	0.33000	394653.93	74	10	0.16	3809.40	31.75	0.684	OK	805860	0.490	537240	0.735
B1		CIP	0.35000	418572.34	92.68	12	0.12	3225.94	22.40	0.483	OK	1345713.6	0.311	672856.8	0.622
A1		CIP	0.37000	442490.76	94.68	10	0.12	3338.24	27.82	0.599	OK	1031065.2	0.429	687376.8	0.644
Σ	00'0		1.05	1255717.03	261.36										

SEISMIC EVALUATION

City Hall and HOA| Palos Verdes Estates, CA

October 26, 2023

Sesimic Forces on North-S	South Direction	Brick Shear Wal	lls and Re	inforced C	oncrete	Masonry Shea	ar walls			
Level 1st	F_x (k) =	1239.25 kips 428.19 kips	Area =	7408 (s 7408 (s	iq-ft) iq-ft)	f _x =	167.29 psf 57.80 psf	(ASCE 41-17 BSE (ASCE 7-16 Seisn	-1E, Seismic Story Force) nic Story Force)	
	Shear wall systen	n= 1	(Brick and I	CMU shear w	alls take she	ar loads based or	n wall lateral stiffness o	r wall rigidities)		
	ASCE 7-16 to ASC	CE 41-17	-1	2.8942	Ţ	(Enter this value	e if using ASCE 7-16 force	es otherwise use 1)		
	Masonry Expecte	ed Strength factor =	1.3					Brick/Mason	ry walls	
	Compressive Stre	ength, f'm =	2500	psi				= 0'W	2	
	Allowable shear s	stress, f _{av} =	65	psi (Brick and	Masonry w	(alls)		= s1m	2	
	Allowable shear s	stress, f _{av} =	6	psi (CIP walls) with Expec	ted Strength fact	or = 1.5	= -m	e	

North-South direction Shear wall loads at 1st Level (1st to Fdn.)

₽

10.00

Wall heights =

			DCR Slab	(Dowels)	1.508	1.578	1.578		
	Slab	Dowels	Capacity	(Ibs)	312378	510378	510378		
		DCR	Foundation	(Dowels)	0.914	2.630	0.957		
	Foundation	Dowels	Capacity	(Ibs)	515423.7	306226.8	842123.7		
			Shear Stress	Check	ок	Not Good	УО		
			DCR (Wall	Shear)	1.276	1.484	1.335		
		Wall Shear	Stress, f,	(psi)	59.22	68.89	62.00		
	Wall Shear	Load, v =	F _{tob} /(1.4*b)	lbs/ft	7106.89	7440.42	7440.42		
		Wall	Aspect	Ratio	0.24	0.15	0.15		
		Shear wall	thickness,	t (in)	10	6	10		
		Shear wall	Length,	b (ft.)	47.33	77.33	77.33	124.66	
17 forces			Ftot	(lbs)	470916.63	805515.29	805515.29	2081947.20	
ASCE 41-		Shear	Distribution	Factor	0.3800	0.6500	0.6500	1.03	
				Wall Type	CIP	CMU	CIP		
			Wall Trib.	Area (ft^2)					
			Wall	(grid line)	1	5	5	Σ	

October 26, 2023

HOA Building Roof Weights:

Roof slope = 2.75:12

HOA Building Floor Weights:

horizontal projection	1.026		
Clay Tile Roofing	14 psf	Flooring	1.5 psf
15/32" 3-ply (OSB/plywood) sheathinį	2.625 psf	2 1/2" thick topping overlay - (light wt. concrete;	23.96 psf
Premanufactured Wood Trusses	3.5 psf	10" deep hollow core slab	68 psf
Insulation (fibrous glass)	1.5 psf	Steel Beams and Columns	2.5 psf
Sprinkler system	1.0 psf	Insulation (fibrous glass)	0 psf
Accoustical Ceiling	1.0 psf	Sprinkler system	1.0 psf
Miscellaneous	2.0 psf	Ceiling plaster	0.0 psf
HVAC duct work (8.0 psf)	8.0 psf	Miscellaneous	2.0 psf
Seismic Dead Weight	33.625 psf	HVAC duct work (8.0 psf)	0.0 psf
Horizontal projection of DL	34.50 psf	Seismic Dead Weight	98.96 psf
Roof Live Load	20.0 psf	Floor Live Load	40.0 psf
Interior partition walk	15 ocf		
Exterior walls	20 - 25 pst		
Exterior waits	20-23 psr		

Weight of HOA Building Roof and Floor Diaphragms

			Area	Weight	Story Wt.		
Levels	Assembly	Unit Wt. (psf)	(sq-ft)	(kips)	(kips)		
	Roof	34.5	3135	108.16			
HOA Roof	Exterior Wall	45	854	38.43	163.74		
	Interior Wall	15	2287	17.15			
Bridge Roof	Roof	34.50	270	9.31			
	Exterior Wall	45	170	7.65	16.96		
	Interior Wall	0	0 120 0				
· · · · · ·							
HOA 2nd	Floor	99.00	2287	226.41			
	Exterior Wall	45	854	38.43	299.15		
	Interior Wall	15	2287	34.31			
· · · · · ·							
Bridge 2nd	Floor	99.00	120	11.88			
	Exterior Wall	45	170	7.65	19.53		
	Interior Wall	0	120	0.00			

Seismic Importance Factor, I E					1.25				
Response Modification Coefficient, R (North-South Direction)					6.5				
Response Modification Coefficient, R (East-West Direction)				6.5					
Deflection Amplification Factor, Cd					4.0				
Response spectral acceleration at short period, S ₄ =					1.170	B			
Response spectral acceleration at	a period 1	sec, S ₁ =		0.381 g					
Soil Site Class					D				
Site Coefficient, Fa					1.0				
Site Coefficient, Fv					1.7				
Design response spectral accelera	tion at she	ort period, S _{KS} =			0.780	g			
Design response spectral accelera	tion at a p	eriod 1sec, S _{x1} =			0.432	g			
BSE-1E conversion factor for S _s =					0.575	x BSE-2E S			
BSE-1E conversion factor for S ₁ =					0.501	x BSE-2E S ₁			
Seismic Design Category, SDC					D	*			
Approximate Fundamental Period, T ₂ =					0.12	sec			
Calculated Time Period (North-South Direction) =				0.143	sec				
Calculated Time Period (East-West Direction) =				0.143	sec				
				T ₅ =	1.805	sec			
				T ₀ =	0.361	sec			
				B ₁ =	1.0024				
				a =	60	(Site Class D)			
				C.,, =	1.0	(1-2 story concrete shear wall building)			
				$C_1C_2 =$	1.208				
				$C_1C_2 =$	1.208				
DCR max=	1.25	DCR min =	1	µ _{strength} =	1.250	(North- South Direction)			
DCR max=	1.25	DCR min =	1	$\mu_{strength} =$	1.250	(East - West Direction)			
		C ₁ =	1.204	C2 =	1.004	(North- South Direction)			
		C ₁ =	1.204	C ₂ =	1.004	(East - West Direction)			
		J =	1	C ₁ C ₂ J=	1.208	(North- South Direction)			
		J =	1	C1C2 J=	1.208	(East - West Direction)			
				S _a =	0.778	g (North- South Direction)			
				S _a =	0.778	g (East - West Direction)			
Seismic Response Coefficients					0.940	(North- South Direction)			
ASCE 41-17, equation 7-21					0.940	(East - West Direction)			
Pseudo Seismic Base Shear, Vy =					169.93	kips (North-South Direction)			
Pseudo Seismic Base Shear, Vx =					169.93	kips (East-West Direction)			

Roof

3.843

76.86

768.56

11.09

0.04

21.75

20.01

WC PROJECT No. 37-009696.02

Story	Forces (North-S	outh Dire	ction)					
Loval	w (kinc)	Area (so	- 	h (ft)	w. b. (k.ft)	c	E (k)	ΣE (kins)
Roof	180.70	3405	180.70	11.5	2078.09	1.000	169.93	169.93
	100110	0.00	200770			2,000		100100
	Σ = 180.70	I			2078.09	1.00	169.93	-
Diaph	ragm Forces (N	orth-Sout	h Direction)				
				,			Trib. Wt. f _p	
Level		F _{px} (k)	F _{px} (min) (k)	F _{px} (max) (k)	F _x /w _x	F_{px}/w_{x}	(psf)	
Roof		169.93	262.54	525.09	0.940	0.940	49.907	
Story	Forces (East-W	est Directi	ion)					
		Area (so	ł-			_		
Level	w _x (kips)	ft)	ΣW_x (kips)	h _x (ft.)	w _x h _x (k-ft)	C _{vx}	F _x (k)	ΣF _x (kips)
Root	180.70	3405.00	180.70	11.5	2078.09	1.000	169.93	169.93
	Σ = 180.70	I		-	2078.09	1.00	169.93	-
Diaph	ragm Forces (Ea	ast-West I	Direction)					
			,				Trib. Wt. fp	
Level		F _{px} (k)	F _{px} (min) (k)	F _{px} (max) (k)	F _x /w _x	F_{px}/w_{x}	(psf)	
Roof		169.93	262.54	525.09	0.940	0.940	49.907	
Diaphra	agm Chord Steel C	alculations	(between line	s 0.1 and 0.6)	at line A and	B.1		
			@ perween o	center of Line (0.5 and 0.4	Area of	Tension	
						W21x68	Chord Axial,	
Level	Wp	R _p	M _{p1}	T/C =	As (in^2)	(in^2)	T _{CE} (kips)	DCR (Chord)
Roof	1.996	69.87	1479.49	41.10	0.16	20.00	726.00	0.06
Diaphra	agm Chord Steel C	alculations	(at lines 0.1 a	nd 0.6)				
			@ Line 0.1 a	na 0.6				
						Area of 2x8	Tension	
				-		Chord Member	Chord Axial,	DOD (Cherd)
Leve	w _p	Rp	M _{p1}	T/C =	As (in^2)	(in^2)	T _{CE} (kips)	DCK (Chord)

0.55

WC PROJECT No. 37-009696.02

October 26, 2023

HOA Building - Roof Trusses

Roof slope (2.75: 12) =		2.75	
Roof slope angle,	θ =	12.91 degree	
Roof Truss span =		40.0 ft	
Truss spacing =		2.0 ft	
Roof pitch height, h =		4.58 ft	
Roof Truss Dead Load, W _D =		31.5 psf	
Uniform Truss DL, w _b =		63 lbs/ft	
Determine Strength level Vertical forces at Roof Truss ends			
Design response spectral acceleration at short period. Sys		0.780 g	
		0.000	
Factored minimum Roof Dead Load, W _{u DL} =		56.70 lbs/ft	
Factored maximum Roof Dead Load, W., pt =		69.30 lbs/ft	
Factored Horizontal Seismic force (ASCE 41-17, BSE-1E) at a typical Roof Tru	JSS =	5.27 kips	-
· · · · · · · · · · · · · · · · · · ·		oner nipo	
Tension uplift force due to seismic lateral load =		-0.77 kips	
at a Roof Truss end		en rape	
Compression Thrust force due to seismic lateral load =		1.75 kips	
at a Roof Truss end			
Determine (ASD) Service level Vertical forces at Roof Truss ends			
Design response spectral acceleration at short period, S _{xs} =		0.780 g	
		Ū.	
Service Level minimum Roof Dead Load, W _{DI} =		56.70 lbs/ft	
Service level maximum Roof Dead Load, Wn =		69.30 lbs/ft	
ASD Horizontal Seismic force at Truss #4 & 5 =		3.77 lbs	
		2	
Tension uplift force due to seismic lateral load =		-0.88 lbs	
at a Roof Truss end			
Compression Thrust force due to seismic lateral load =		1.64 lbs	
at a Roof Truss end			

SEISMIC EVALUATION

City Hall and HOA | Palos Verdes Estates, CA

WC PROJECT No. 37-009696.02

Vertical Load Effect on HOA Pedestrian Bridge

Upward load on cantilever	7.322	kips	ASCE 7-16 section 12.4.4
projection only			ASEL 7-10 Section 12.4.4
Sideway load on cantilever projection	7.322	kips	
Seismic load for a simply supported bridge at Roof Leve	6.35	kips	ASCE 41-17 Level load per section 7.2.10 & 7.2.11.1
Seismic load for a simply supported bridge at 2nd Level	13.66	kips	ASCE 41-17 Level load per section 7.2.10 & 7.2.11.1
Shear load at bridge support = at Roof level =	1.12	kips per co	nnection
Shear load at bridge support = at 2nd level	2.41	kips per an see 24/S-4	chor bolt and 25/S-4
3/4" dia. Anchor Bolt Steel Shear capacity	8.97	kips per an	chor bolt
3/4" dia. Anchor Bolt shear capacity at top of grouted CMU wall	0.5	kips (Gover	rns)
DCR (Shear) - anchors =	4.823	(Not Good))

WC PROJECT No. 37-009696.02

31148.74 16921.24

Overstress Overstress

2.22 4.67

2 2.5

640

2987.18 1419.21

0.52 0.95

16.42 8.92

32624.90 37303.88

32624.90 8 37303.

688.2

A3

56.68

184568.01

184568.01

3405.00

Sesimic Fo	rces on Eas	st-West Dir	ection Pl	ywood She	ear Walls								
Level Roof		F _x (k) =	169.93 36.11	kips kips	Area =	3135	(sq-ft) (sq-ft)	= ×	54.20 F	osf osf	(ASCE 41-17 BS (ASCE 7-16 Seis	.E-1E, Seismic Stu smic Story Force)	ory Force)
		Shear wall sy:	stem =		1	(Wood shear w	alls take 100%	6 of the total	story load)				
		ASCE 41-17 to	o ASCE 7-16		1.00	4.7058	Ļ	(Enter this va	alue if using.	ASCE 7-16 for	ces otherwise u	se 1)	
		Wood Shear v factor =	walls shear (distribution	1.086	Shear force at a	all wood struct	tural panels =		184.57	kīps		
		Wood Structu m _{io} = m _c = m _c =	ural wall par 1.7 3.8 4.5	leis				Tota	<u></u>	184.57	kips	ASCE 41-17 Seis	mic Stary force
East-West dir	rection Shear v	walls loads at	the 2nd Lev	rel (Roof to 2	(pu		>	all heights =	8.5	Ŧ			
		ASCE 41-1	7 forces										
		ł		Shear wall		Vall Shear Load, v =		Allowable Shear 8d	Edge Nail		t	COLA/UCI Data, Tested	Applied Load
(grid line)	Area (ft^2)	(Ibs)	F _{tot} (ibs)	(ft.) (ft.)	wall Aspect Ratio	los/ft	or 2 sides	(2.2 , 2.2) 12") (lbs/ft)	(in.)	(Shear)	Check for IO	wall strength (lbs)	to resteu Load Ratio
B.1A	389.92	21135.61	21135.61	8.42	1.01	1792.98	1	640	2.5	2.80	Overstress	15972.74	1.323
B.1B	1177.58	63830.72	63830.72	13	0.65	3507.18	1	640	2.5	5.48	Overstress	24661	2.588
A1	547.42	29672.90	29672.90	9.92	0.86	2136.59	1	640	2.5	3.34	Overstress	18818.24	1.577
A2	601.88	32624.90	32624.90	16.42	0.52	1419.21	1	640	2.5	2.22	Overstress	31148.74	1.047

WC PROJECT No. 37-009696.02

October 26, 2023

Sesimic Fo	orces on No	hth-South [Direction	Plywood S	hear Walls								
Level Roof		F _x (k) =	169.93 36.11	dps dps	Area =	3135 3135	(sq-ft) (sq-ft)	<u>ی</u> =	54.20 p 11.52 p	sf sf	(ASCE 41-17 BS (ASCE 7-16 Seis	E-1E, Seismic Sto mic Story Force)	ry Force)
		Shear wall sys	stem =		1	(Wood shear wa	ils take 100%	of the total s	tory load)				
		ASCE 41-17 to	o ASCE 7-16	1	1.00	4.7058	ļ	(Enter this val	ue if using	ASCE 7-16 for	ces otherwise us	e 1)	
		Wood Shear v	walls shear d	listribution	1.086	Shear force at al	wood struct	ural panels =		184.57	kips		
		Wood Structu m _{Io} = m _{Is} = m _{CP} =	ural wall pan 1.7 3.8 4.5	els				Total		184.57	kips	ASCE 41-17 Seisr	mic Story force
North-South	direction Shea	ar walls loads	at the 2nd L	evel (Roof to	2nd)		Wa	all heights =	8.5 f	-			
		ASCE 41-1	7 forces										

			Applied Load	to Tested Load	Ratio	3.185	1.595	2.110	1.850	2.231	1.991	
			Data, Tested	Wall strength	(lbs)	11856.25	13905.01	11856.25	25135.25	12804.75	12330.5	
				Shear Status	Check for IO	Overstress	Overstress	Overstress	Overstress	Overstress	Overstress	
				Wall DCR	(Shear)	6.74	3.38	4.47	3.92	4.72	4.21	
			Edge Nail	Spacing	(in.)	2.5	2.5	2.5	2.5	2.5	2.5	
		- Julian	Shear 8d	(2.5", 2.5",	12") (lbs/ft)	640	640	640	640	640	640	
				Sheathing 1	or 2 sides	1	1	1	1	1	1	
		sooya Herry	Load, v =	F _{tob} /(1.4*b)	lbs/ft	4315.77	2161.70	2858.93	2506.43	3022.86	2697.32	
				Wall Aspect	Ratio	1.36	1.16	1.36	0.64	1.26	1.31	
			Shear wall	Length, b	(ft.)	6.25	7.33	6.25	13.25	6.75	6.5	46.33
17 farmer	1/ IUIUES				F _{tot} (lbs)	37762.99	22183.39	25015.61	46494.34	28566.03	24545.65	184568.01
ACCE A1	-TH JOCH			ΣF _x	(lbs)	37762.99	22183.39	25015.61	46494.34	28566.03	24545.65	184568.01
				Wall Trib.	Area (ft^2)	696.67	409.25	461.5	857.75	527	452.83	3405.00
				Wall	(grid line)	0.1A	0.1B	0.1C	0.6A	0.6B	0.6C	Σ

WALKER CONSULTANTS | 75

WC PROJECT No. 37-009696.02

HOA	Building	g Seismic Para	meters (2	nd Level)		
ASC	E 41-17 S	eismic Parameters	s (BSE-1E)			
Seismic Importance Factor, I _E					1.25	
Response Modification Coefficient	t, R (North	-South Direction)			5	
Response Modification Coefficient	t, R (East-V	West Direction)			5	
Deflection Amplification Factor, C	1				3.5	
Response spectral acceleration at	short peri	iod, S ₅ =			1.170	g
Response spectral acceleration at	a period 1	Lsec, S ₁ =			0.381	g
Soil Site Class					D	
Site Coefficient, Fa					1.0	
Site Coefficient, F _v					1.7	
Design response spectral accelera	tion at she	ort period, S _{xs} =			0.780	g
Design response spectral acceleration	tion at a p	eriod 1sec, S _{x1} =			0.432	g
BSE-1E conversion factor for S _s =					0.575	x BSE-2E S,
BSE-1E conversion factor for S ₁ =					0.501	x BSE-2E S ₁
Seismic Design Category, SDC					D	
Approximate Fundamental Period	, T _a =				0.17	sec
Calculated Time Period (North-So	uth Directi	ion) =			0.200	sec
Calculated Time Period (East-West	st Directio	n) =			0.200	sec
				T ₅ =	1.805	sec
				T _o =	0.361	sec
				B ₁ =	1.0024	
				a =	60	(Site Class D)
				C _m =	1.0	(1-2 story concrete shear wall building)
				C ₁ C ₂ =	1.106	
				C ₁ C ₂ =	1.106	
DCR max=	1.25	DCR min =	1	$\mu_{strength} =$	1.250	(North- South Direction)
DCR max=	1.25	DCR min =	1	$\mu_{strength} =$	1.250	(East - West Direction)
		C ₁ =	1.104	C ₂ =	1.002	(North- South Direction)
		C ₁ =	1.104	C ₂ =	1.002	(East - West Direction)
		J =	1	C1C2]=	1.106	(North- South Direction)
		1 =	1	C1C2]=	1.106	(East - West Direction)
				S _a =	0.778	g (North- South Direction)
				S _a =	0.778	g (East - West Direction)
Seismic Response Coefficients					0.861	(North- South Direction)
ASCE 41-17, equation 7-21					0.861	(East - West Direction)
Pseudo Seismic Base Shear, Vy =					429.96	kips (North-South Direction)
Pseudo Seismic Base Shear, Vx =					429.96	kips (East-West Direction)

_

WC PROJECT No. 37-009696.02

October 26, 2023

Story For	ces (North-S	outh Dire	ection)					
Lavel	w (kipc)	Area (s	q- SW (kipc)	b (ft)	w. h. (k.ft)	c	E (k)	SE (kipc)
2nd	499.38	2407	499.38	17.15	8564.37	1.000	429.96	429.96
Σ	= 499.38				8564.37	1.00	429.96	-
				•				-
Diaphrag	m Forces (N	orth-Sout	th Direction))				
							Trib. Wt. fp	
Level		F _{px} (k)	F _{px} (min) (k)	F _{px} (max) (k)	F _x /w _x	F_{px}/W_x	(pst)	
Zna		429.96	/25.55	1451.10	0.861	0.861	178.629	
Story For	ces (East-We	est Direct	ion)					
Level	w (kins)	Area (S ft)	q. ΣW (kins)	h (ft)	w h (k-ft)	c	F (k)	ΣF (kins)
2nd	499.38	2407.00	499.38	17.15	8564.37	1.000	429.96	429.96
Σ	= 499.38				8564.37	1.00	429.96	-
-				•				-
Diaphrag	m Forces (Ea	ast-West	Direction)					
							Trib. Wt. fp	
Level		F _{px} (k)	F _{px} (min) (k)	F _{px} (max) (k)	F _x /w _x	F_{px}/w_{x}	(psf)	
2nd		429.96	725.55	1451.10	0.861	0.861	178.629	
Diaphragm	Chord Steel C	alculations	(between line	s 0.1 and 0.6)	at line A and	B.1		
			@ between o	enter of Line	0.3 and 0.4			
						Area of chord bars	Tension Chord Axial,	
Level	wp	Rp	M _{p1}	T/C =	As (in^2)	(in^2)	T _{CE} (kips)	DCR (Chord)
2nd	7.145	250.08	5295.46	147.10	1.13	0.88	31.94	4.60
Distant			(
Diaphragm	Chord Steel C	alculations	(at lines 0.1 a @ Line 0.1 a	na 0.6) nd 0.6				
			8			Area of chord	Tension	
						bars	Chord Axial,	
Level	wp	Rp	M _{p1}	T/C =	As (in^2)	(in^2)	T _{CE} (kips)	DCR (Chord)
2nd	13.754	275.09	2750.89	39.70	0.30	0.44	15.97	2.49
Torsion	al Analysis	s of Rigi	d Diaphrag	ym	File = C:\Users\Skh	an/DOCUME~1/ENGINE Software c	 1\CITYOF~3\2023C opyright ENERCALC, 	A~1\palos verdes calculations.ec6 INC. 1983-2019, Build:10.19.1.30
Lic. # : KW-0	6003901	a CID and	CMU well rigiditi					WALKER CONSULTANTS
DESCRIPT	IUN: HUA BIO	g - CIP and	CINO wali ngididi	es				
General Ir	nformation					Calcula	ations per IBC	2012, CBC 2013, ASCE 7-1
Applied Late	ral Force in "X" Di	rection	10	00.0 k	Center of She	ar Application :	t	25 750 8
Applied Late	rai Force in Y Di	rection	1.	JU.0 К	Distance	from "Y" datum poir	nt	18.750 ft
Note:	These loads an when applied to	e resolved into the system of	o X & Y componer of elements at ang	nts ular increments.	Accidental Tor Ecc. as %	sion values per AS	CE 7-05 12.8.4.2	5.00 %
Load Orienta	ation Angular Incre	ment		30.0 deg	L	Dimension		0.00 70
Load Location	on Angular Increm	ent		15.0 deg	Maximum Alo	Dimensions : ong "X" Axis		71.50 ft
Center of R	gidity Location (ca	alculated)			Alo	ing T Axis		37.50 R
"X" dis "Y" die	t, from Datum		24	.334 ft .419 ft				
1 415	a a sin estanti		Accident	al Eccentricity +/-	from "Y" Coord	of Center of Load /	Application :	3.575 @
			Accident	al Eccentricity +/-	from "X" Coord.	of Center of Load A	Application :	1.875 ft

Accidental Eccentricity +/- from "X" Coord. of Center of Load Application :

Lic. # : KW-06003901

WC PROJECT No. 37-009696.02

October 26, 2023

Torsional Analysis of Rigid Diaphragm

File = C1UsersiSkhaniDOCUME~11ENGINE~11CITYOF~312023CA~11palos verdes calculations.ec6 Software copyright ENERCALC, INC. 1963-2019, Build:10.19.1.30 WALKER CONSULTANTS

DESCRIPTION: HOA Bldg - CIP and CMU wall rigidities

Force)

WC PROJECT No. 37-009696.02

SEISMIC EVALUATION

City Hall and HOA | Palos Verdes Estates, CA

October 26, 2023

Sesimic Forces on North-South	n Direction	Reinforced Conci	rete Masoi	nry Shear walls			
Level 2nd	F_x (k) =	429.96 kips 178.36 kips	Area =	2407 (sq-ft) 2407 (sq-ft)	f _x =	178.63 psf 74.10 psf	(ASCE 41-17 BSE-1E, Seismic Story (ASCE 7-16 Seismic Story Force)

vall rigidities)
stiffness or v
n wall lateral
loads based o
lls take shear
MU shear wal
1 (C
hear wall system =

ASCE 7-16 to ASCE 41-17	-1	2.4106	Ļ	(Enter this value if using ASCE 7-16 forces otherwise use	e 1)
Masonry Expected Strength factor =	1.3			Masonry wa	ils
Compressive Strength, f'm =	2500	psi		m ¹⁰ =	2
Allowable shear stress, f _w =	65	psi (Brick a	nd Masonry v	m _{LS} =	2
Allowable shear stress, $f_{av} =$	6	psi (CIP wa	lls) with Expe	cted Strength factor = 1.5 m _{CP} =	3

North-South direction Shear wall loads at 1st Level (2nd to fdn.)

Wall heights = 17.15

Ŧ

			ASCE 41	17 forces											
												Wall			
					Shear	Shear		Wall Shear				Vertical			
			Shear		wall	wall	Wall	Load, v =	Wall Shear		Shear	Dowels	DCR Wall	Slab Dowels	
Wall	Wall Trib.	Wall	Distribution	Ftoet	Length,	thickness,	Aspect	F _{tot} /(1.4*b)	Stress, f,	DCR (Wall	Stress	Capacity	Vertical	Capacity	DCR Slab
(grid line)	Area (ft^2)	Type	Factor	(lbs)	b (ft.)	t (in)	Ratio	lbs/ft	(psi)	Shear)	Check	(lbs)	(Dowels)	(lbs)	(Dowels)
0.1		CIP	0.64740	278356.40	27.5	8	0.62	7230.04	75.31	1.622	ОК	199650	1.394	332750.00	0.837
0.6A		CMU	0.11390	48972.50	8.83	6	1.94	3961.54	36.68	0.790	ок	49681.995	0.986	82803.33	0.591
0.68		CMU	0.42678	183498.52	15.75	6	1.09	8321.93	77.05	1.660	Not Good	88617.375	2.071	147695.63	1.242
Σ	0.00		1.19	510827.42	52.08										

Level 2nd

F _x (k) =	429.96 kips 178.36 kips	Area =	: 2407 2407	(sq-ft) (sq-ft)	f, =	178.63 psf 74.10 psf	(ASCE 41-17 B5 (ASCE 7-16 Sei	E-1E, Seismic Story Force) smic Story Force)
Shear wall systen	n = 1	(CMU she	ar walls take	e shear loads t	based on wall late	eral stiffness or wall ri	gidities)	
ASCE 7-16 to ASC	CE 41-17	1	2.4106	ţ	(Enter this value	e if using ASCE 7-16 for	rces otherwise u	se 1)
Masonry Expecte	ed Strength factor =	1.3					Masonry w	alls
Compressive Stre	ength, f'm =	2500	psi (Brick ai	nd Masonry w	valls)		= ⁰⁰ E	2
Allowable shear :	stress, f _{av} =	65	psi				= ^{SI} E	2
Allowable shear :	stress, f _{av} =	6	psi (CIP wa	IIs) with Expec	cted Strength fact	tor = 1.5	m _{CP} =	ñ

WALKER CONSULTANTS

CONSULTAN

WC PROJECT No. 37-009696.02

East-West direction Shear wall loads at 1st Level (2nd to fdn.)

#

17.15

Wall heights =

			ASCE 41-	17 forces											
												Wall			
					Shear	Shear		Wall Shear				Vertical			
			Shear		wall	wall	Wall	Load, v =	Wall Shear		Shear	Dowels	DCR Wall	Slab Dowels	
Wall	Wall Trib.	Wall	Distribution	Ftot	Length,	thickness,	Aspect	F _{tot} /(1.4*b)	Stress, f _v	DCR (Wall	Stress	Capacity	Vertical	Capacity	DCR Slab
(grid line)	Area (ft^2)	Type	Factor	(lbs)	b (ft.)	t (in)	Ratio	lbs/ft	(psi)	Shear)	Check	(lbs)	(Dowels)	(lbs)	(Dowels)
Al		CMU	0.0883	37956.91	9.25	8	1.85	2931.04	30.53	0.658	ЮК	52045.125	0.729	86741.88	0.438
A2		CMU	0.4675	200993.61	20.25	8	0.85	7089.72	73.85	1.591	Not Good	113936.63	1.764	189894.38	1.058
A3		CMU	0.0948	40777.45	9.5	8	1.81	3065.97	31.94	0.688	ОК	53451.75	0.763	89086.25	0.458
A.2		CIP	0.0768	33029.56	9.5	8	1.81	2483.43	25.87	0.557	OK	68970	0.479	114950.00	0.287
B.1A		CMU	0.1944	83588.61	12.33	80	1.39	4842.35	50.44	1.086	ЮК	69374.745	1.205	115624.58	0.723
B.1B		CMU	0.1100	47291.35	9.67	8	1.77	3493.23	36.39	0.784	OK	54408.255	0.869	90680.43	0.522
Σ			1.03	443637.50	70.50										

SEISMIC EVALUATION City Hall and HOA | Palos Verdes Estates, CA

